PBT 0.00% 0.0¢ prana biotechnology limited

Iron is bad in nerve injury recovery

  1. 1,078 Posts.
    lightbulb Created with Sketch. 160
    This is again a mouse study but I think it is a valuable study for PBT434 and in humans.  In fact immediately after PBT434 has been tested to be safe in the phase 1, it is possible that PBT434 could be tested in this kind of severe nerve injuries.  

    Neural Regen Res. 2019 Mar;14(3):532-541. doi: 10.4103/1673-5374.245480.
    Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis.

    Yao X1, Zhang Y2, Hao J3, Duan HQ2, Zhao CX2, Sun C2, Li B2, Fan BY2, Wang X2, Li WX2, Fu XH2, Hu Y4, Liu C5, Kong XH5, Feng SQ6.
    Author information


    Abstract

    Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows: (1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group. (2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group. (3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury. (4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group. (5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2 (ACSF2) and iron-responsive element-binding protein 2 (IREB2) were up-regulated in the Deferoxamine group. (6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury.
 
watchlist Created with Sketch. Add PBT (ASX) to my watchlist

Currently unlisted public company.

arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.