26th June 2018

ASX ANNOUNCEMENT

New High-Grade Base Metal Drill Targets and Porphyry Related Geological Model Confirmed at Braeside

Highlights

- Five potential high-grade Zn breccia pipes confirmed by multi-element grab sampling in addition to the Zn breccia pipe discovery zone (single drill hole BRRC019 5m @ 8.0% Zn, 035% Pb from 32m (first and only hole into 2.2km long soil anomaly) at the Devon Cut Prospect (16th January 2018).
 - All five new high-grade Zn breccia pipes targets (virgin no historical workings) at Devon Cut returned high-grade Zn including and up to:
 - Target A 9.47% Zn
 - Target B 38.4% Zn
 - Target C 48% Zn
 - Target D 48.7% Zn
 - Target E 35.43% Zn
 - The potential high-grade Zn breccia pipes also returned:
 - Pb to 58.53% and 57.37%
 - Cu to 10.5%
- Historic workings at the Lightning Ridge Prospect returned very high-grade silver, lead and indium. Grab sampling results include:
 - Ag to 1108 g/t, In (indium) to 515 ppm and Pb to 38.6%
- The Gossan East Boom Boom Mancini mineralised trend extends over a strike of 5.4km. Results from virgin outcrop (no historical workings) includes:
 - Pb to 34.96%, Zn to 5.06% and Cu to 5.34%
- At the **Mt Brockman 2 Central Zn Prospect**, widespread moderate grade Zn in sediments is associated with zincian smectite (**sauconite**).
 - Zn values ranged from 1.23% to 2.29%
- Significant high-grade mineralisation has been delineated over a strike of 800m at the Mt Brockman 2 Prospect. Grab sample results include:
 - Pb to 43.43%, Cu to 20.38%, Ag to 102 g/t and Zn to 3.59%
- A new potential high Zn breccia pipe (100m strike) has been discovered at the Mt Brockman 2 South Prospect. Very strong silica – sericite alteration up to 15m in width returned:
 - Zn to 31.23%, Pb to 11.83% and Cu to 6.34%
- A new large barium-potassium-lead alteration system has been discovered 5km north northwest along strike from the Devon Cut Prospect. Barium potassic feldspar (hyalophane) occurs over a strike of 1.8km and up to 70m in width. 30 grab samples were collected.
 - All anomalous with average >1% BaO.
 - 9 samples reported > 5% BaO with a peak value of 8.16%.
 - Pb averaged 2000ppm. Peak value of 1.44% Pb
- Access approvals are well advanced with the planned RC drilling scheduled for early August

Rumble's Technical Director, Mr Brett Keillor, said "The exploration potential for Braeside has been significantly enhanced with the recognition of large scale high level barium potassic feldspar alteration with elevated base metals.

Understanding regional zonation of metals is paramount in developing exploration vectors which will help Rumble find potential economic base metal deposits.

The discovery of barium rich potassic feldspar with strongly anomalous Pb, disseminated Zn in sediments and potential multiple high-grade sulphide (Zn rich) breccia pipes within major altered feeder structures, all support the porphyry vein/breccia pipe related - VMS model continuum that may ultimately lead to a camp scale base metal province."

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Rumble Resources Ltd (ASX: RTR) ("Rumble" or "the Company") is pleased to announce that ongoing systematic exploration at the Braeside project has confirmed high grade mineralisation and significantly discovered a large alteration system which complements the proposed porphyry related mineralisation model.

Multi-element analysis (**201 grab samples**) have returned very high-grade zinc, lead, copper, silver, barium and indium assays. XRD (X Ray Diffraction) was completed on six samples to aid in determining mineral species.

The grab sampling and XRD analysis is aiding in prioritising first order RC drilling targets. **Rumble is on track to commence drilling early August.**

Image 1. Braeside Project Location, Regional Geology and Tenement Status

Grab Sampling Results

Multi-element assaying (201 grab samples) and XRD analysis focused mineralised trends determined by regional soil geochemistry with detailed pXRF in soil follow-up sampling. The soil geochemistry highlighted fifteen (15) base metal zones with up to twenty-three (23) targets/prospects (refer to announcement 5th June 2018 – Braeside Exploration Update – Multiple New Drill Targets).

The current grab sampling has only tested six (6) of these new targets and in addition, tested historic workings at the Lightning Ridge Prospect and defined an area of extensive Ba-K-Pb alteration at a new discovery known as Barium Ridge.

Image 2. Location of Braeside Prospects/Targets – Current Targets in Yellow

Devon Cut Prospect (images 2 & 3)

High-grade base metal assays were confirmed from rock chip samples taken from all five potential Zn breccia pipes defined previously (announcement 5th June 2018). Additional to the discovery zone (single RC drill-hole BRRC019 returned 5m @ 8% Zn, 0.35% Pb from 32m), targets A to E (potential Zn breccia pipes) returned exceptionally high-grade Zn and/or Pb values in grab sampling over previously defined very high-grade Zn in soil geochemistry (pXRF). Results include:

Target A (200m strike)

- Four (4) samples collected over virgin outcrop (no previous historical workings)
 - Zn to 9.47%, Pb to 21.65%, Ag to 43 g/t and Au to 0.26 g/t

Target B (100m strike)

- Five (5) samples collected over virgin outcrop (**no previous historical workings**)
 - Zn to 38.4%, Cu to 10.5%, Pb to 3.18%, Ag to 76 g/t and Au to 0.11 g/t.

Target C (120m strike)

Seven (7) samples collected over virgin outcrop (no previous historical workings)

• Zn to 48%, Pb to 57.37%, Ag to 184 g/t and Au to 0.58 g/t

Target D (80m strike)

Two (2) samples collected over virgin outcrop (no previous historical workings)

• Zn to 48.7% and Pb to 2.65%.

Target E (200m strike)

Six (6) samples collected over virgin outcrop (no previous historical workings)

• Zn to 35.43%, Pb to 1.4% and Au to 0.57 g/t

Image 3. Devon Cut Prospect – Grab Sampling Results over pXRF in soil Zn Geochemistry

Lightning Ridge Prospect (images 2 & 4)

The Lightning Ridge Prospect lies close to the eastern boundary of E45/2032 and comprises of a series of shallow historic pits trending northwest over a strike of 250m. Geological observation indicates the mineralisation is a different style than the mineralised trends further to the west (wide pervasively altered fracture zones). Massive galena pods are associated with relatively narrow high-level quartz veining. A total of eight grab samples were collected (in-situ). Most samples returned very high-grade Pb (up to 38.6% Pb) however the silver content is very high returning up to 1108 g/t Ag. Indium was also very high with a peak value of 515 ppm In. Zn was relatively low (peak value of 1.63% Zn).

Gossan East- Boom Boom Mancini Zone (images 2 & 4)

Grab sampling of three high-order base metal in soil targets (pXRF) has confirmed high-grade in-situ Zn and Pb mineralisation along the north-northwest trending Gossan East – Boom Boom Mancini alteration structure. **Only fourteen** (14) grab samples have been collected along 5.4 km of strike. Results include

Gossan East Prospect North Zone (250m strike)

- Two (2) samples collected over virgin outcrop (no previous historical workings):
 - Pb to 14.66%, Zn to 5.06% and Cu to 2.45%

Gossan East Prospect South Zone (200m strike)

Five (5) samples collected over virgin outcrop (no previous historical workings):

• Pb to 34.96%, Zn to 2.42%, Cu to 5.34% and Ag to 27.4 g/t

Boom Boom Mancini Prospect (1.5 km strike)

Six (6) samples collected over and along strike from some very small workings at the southern end of the Boom Boom Mancini trend returned strong Pb, Zn and Cu. Results include:

- Pb to 4.59%, Zn to 4.96% and Cu to 3.22%
- Further grab sampling (results pending) conducted along the 1.5km strike focused on recently discovered Zn carbonate gossans.

Image 4. Lightning Ridge, Gossan East – Boom Boom Mancini Grab Sampling Results

Mt Brockman 2 Central Zn, Mt Brockman 2 and Mt Brockman 2 South Prospects (images 2 & 5)

Three zones of high-grade base metal mineralisation focused in the Mt Brockman 2 area have been confirmed by grab sampling (multi-element analysis).

Mt Brockman 2 Central Zn Prospect (400m strike)

Of potential significance is the Mt Brockman Central Zn Prospect where widespread moderate zinc mineralisation has been found within gently west dipping north-south striking fine grain volcaniclastics (siltstone). XRD (X Ray Diffraction) analysis has indicated disseminated zinc mineralisation is associated with zinc smectites (**sauconite**). Ten (10) grab samples were collected over 400m of strike. Five samples returned significant Zn anomalism ranging from **1.23% to 2.29% Zn**. The rock chip samples were only slightly weathered.

Mt Brockman 2 (800m strike)

Over a strike of 800m, strong pervasive alteration trending north northwest returned high-grade base metals. A total of sixteen (16) grab samples were collected along strike with eight (8) samples reporting >10% Pb with a peak value of **43.43% Pb**. **Cu returned up to 20.38%** with **Ag to 102 g/t**. Three (3) samples returned zinc in the range **2.78% - 3.59% Zn**.

Mt Brockman 2 South Prospect (100m strike)

A potential **new high grade Zn breccia pipe** has been discovered over a strike of 100m at the southern end of the Mt Brockman 2 trend. Four (4) grab samples collected over very strong silica – sericite alteration (15m wide) returned **zinc values of 31.24 % and 10.77% Zn**. Other peak values include **11.83% Pb** and **6.34% Cu**.

Image 5. Location of The Mt Brockman 2 Area – Grab Sampling and XRD Results

Barium Ridge Target (image 2 & 6)

A new zone of barium – potassium – lead anomalism associated with a large alteration system has been discovered approximately 5km north northwest along strike from the Devon Cut Prospect. **The zone has a strike over 1.8km and is completely open**. Alteration is up to **70m in width**. Thirty (30) grab samples were collected from the alteration zone and 5 samples were analysed by XRD to confirm the mineral species related to the anomalism.

The XRD analysis has confirmed barium, potassium, lead and elevated rubidium are associated with feldspar. The feldspar belongs to the celsian – hyalophane group of relatively rare alkalic feldspars.

Multi-element analysis of the grab samples confirmed all 30 rock chips returned >1% BaO, with 9 samples returning >5% BaO. The peak value is **8.16% BaO**. Potassium was high (average 5.8%) with a peak value of 9.51% K.

The average Pb content of all 30 samples is 2000ppm, with the peak value of 1.44% Pb. Rb was elevated with a peak value of 402ppm. Both the Pb and Rb report to the feldspar (hyalophane).

Image 6. Barium Ridge Location Plan - Local Geology, Grab and XRD Sampling Results

Exploration Potential and RC Drill Targeting of Current Prospects

Devon Cut Prospect (image 3)

Five (5) new high-grade Zn breccia pipes have been inferred at Devon Cut based on the single RC drill-hole completed in Nov 2017 by Rumble (BRRC019 – 5m @ 8.0% Zn, 0.35% Pb from 32m within a broader zone of 30m @ 1.5% Zn from 28m). The single RC discovery drill-hole at Devon Cut was testing below a small historic mine (maximum depth of 8m). Geological observations **defined multiple Zn gossans and characteristic oxidation textures/features indicative of Zn breccia pipes at surface** with the workings and along strike. The discovery drill-hole and inferred breccia pipe **is completely open**. Based on the pXRF soil sampling and the latest very high-grade grab samples, **the five new potential Zn breccia pipes along strike from the discovery have larger "signatures" and likely represent significant Zn mineralisation**.

Rumble plans to test each potential new Zn breccia pipe with RC drilling. RC drilling is also planned to test the depth extension below the discovery hole (BRRC019) and immediately along strike to scope the size potential of the inferred breccia pipe.

Lightning Ridge Prospect (image 4)

The mineralisation style at Lightning Ridge differs from the large alteration systems with base metals that lie further west. Mineralisation is podiform and associated with narrow quartz veining and there is only a thin selvage of alteration host within volcanics. The zone is northwest trending with a strike of 250m bounded by terminating faults. The high-grade silver (**up to 1108 g/t**) is consistent with grab samples returning 100 – 200 g/t Ag on average. The indium is also very high (**up to 515 ppm**) along with very high-grade Pb (**up to 38.6%**). The style is inferred to be a distal high-level base metal epizonal/epithermal vein (based on the high silver and indium).

Three RC drill sections have been planned to test the 250m strike zone.

Gossan East – Boom Boom Mancini Prospects (image 4)

The mineralisation extends over a strike of 5.4km. Only fourteen (14) grab samples have been assayed with further sampling on-going. High-grade Pb and Cu with strongly anomalous Zn is associated with strike extensive silica-sericite altered zones with varying widths of 5 to 10m. Recent reconnaissance geological mapping and sampling subsequent to the current grab sampling results has identified significant Zn gossan outcrops along the Boom Boom Mancini trend. The style of target is considered to be similar to the Devon Cut Prospect.

Mt Brockman 2 Central Zn Prospect (image 5)

Discovering disseminated Zn mineralisation in gently dipping volcaniclastics adjacent to north-south faults has highlighted **the potential for porphyry related/VMS associated syngenetic to diagenetic sedimentary hosted base metal deposits**. Elsewhere in the Braeside Project, disseminated Zn has been identified at the Bakers Dozen Prospect (see image 2) where pXRF soil geochemistry has outlined a 400m by 100m Zn anomaly (completely open). The Bakers Dozen Zn anomaly is hosted in siltstone over carbonate. The carbonate has no anomalism. **The Zn values at Mt Brockman 2 Central Zinc Prospect are associated with Zn smectite (sauconite**).

RC drilling is planned to test the Zn rich disseminated volcaniclastics in the primary zone. Subject to the mineralogy, if sauconite persists at depth, there is potential for non-sulphide supergene to hypogene Zn mineralisation styles.

Mt Brockman 2 Prospect (image 5)

Predominately **high-grade Pb occurs over a strike of 800m** with moderate width silica – sericite alteration zones up to 6m in width. Later epigenetic quartz vein overprinting is relatively common with later deformation stages to the large alteration fracture/feeder zones. Late epigenetic mineralisation cross cutting the earlier feeder zones often upgrade galena into narrow high-grade quartz Pb veins and these veins were targeted by early prospectors. The epigenetic veins don't represent drill targets because of their narrow widths. **Rumble is focusing the drilling on the wider alteration zones with strong Zn mineralisation**.

Mt Brockman 2 South Prospect (image 5)

A potential high grade Zn breccia pipe has been identified with very high-grade Zn (**up to 31.24%**) and intense silica – **sericite alteration up to 15m in width**. A single RC drill hole is planned with a deeper contingent hole if appropriate.

Barium Ridge Target (image 6)

Deep RC drilling is planned to test the large barium potassic feldspar (hyalophane) alteration system. Known porphyry related and VMS deposits worldwide, often have barite capping massive base metal sulphides. In older moderately metamorphosed systems, barium rich potassic feldspar is often zonal to potential mineralisation.

- ENDS -

Shane Sikora Managing Director

For further information visit rumbleresources.com.au or contact enquiries@rumbleresources.com.au.

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current mineral exploration portfolio and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Grab sampling – 201 rock chip samples assayed by multi-element wet analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.) 	 Not applicable - no drilling completed.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Not applicable - no drilling completed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Not applicable - no drilling completed.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain 	 Not applicable - no drilling completed.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 On average 1 to 2 kg rock chip sample collected (grab). Analysis by Intertek Genalysis, Maddington, WA. Methodology included FA 25/OE for Au and multielement four acid digest with ICP-MS and ICP-OES Standard and blank used every 50 grab samples. Blank – CRM 27b, Standards include CRM620,621 and 623
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Not applicable - no drilling completed.
Location of • data points •	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Sample sites located by GPS using GDA94 Z51 datum
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Not applicable as no drilling completed.
Orientation • of data in relation to geological structure •	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Not applicable as no drilling completed
Sample • security	The measures taken to ensure sample security.	 Directly sent to Lab in appropriate tied polywoven and calico bags
Audits or • reviews	The results of any audits or reviews of sampling techniques and data.	•

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national	 The project comprises of three granted exploration licences – E45/2032, E45/4873, and E45/4874. A number of pending EL form part of the project area.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• E45/2032 is currently owned by Maverick Exploration Pty Ltd. Rumble Resources has an earn in JV agreement. The licence is granted, in a state of good standing and has no known impediments to operate in the area.
		• E45/4873 and E45/4874 are 100% owned by Rumble. Exploration has commenced on E45/4873.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration solely completed by Rumble Resources
Geology	 Deposit type, geological setting and style of mineralisation. 	 Target is Zn, Pb, Cu, V and precious metals. Deposit type is conceptual. Porphyry related (including VHMS) polymetallic deposit type and disseminated sediment hosted type.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling reported
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No drilling completed

Criteria	JURC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Not applicable – no drilling completed
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Image 1 – Braeside Project – Location Regional Geology and Tenement Status Plan Image 2 - Braeside Project – Location of Prospects/Targets E45/2032 Image 3 – Devon Cut Prospect – Grab Sampling Results over pXRF in soil Zn Geochemistry Image 4 – Lightning Ridge, Gossan East – Boom Boom Mancini Grab Sampling Results Image 5 – Location of The Mt Brockman 2 Area – Grab Sampling and XRD Results Image 6 - Barium Ridge Location Plan – Local Geology, Grab and XRD Sampling Results
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 No drilling reported so no widths available. Data included at Appendix.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 XRD (X Ray Diffraction) analysis was completed on select (6) rock chip samples to ascertain source of elemental anomalism. Intertek completed the analysis using a PANalytical Cubex XRD with copper radiation operating at 45kV and 40mA and a graphite monochrometor
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Grab sampling is ongoing to aid in targeting RC drilling planned for late July/Aug.

				_						
Sample ID	Easting	Northing	Au ppb	Ag ppm	BaO%	Cu %	In ppm	К%	Pb %	Zn %
BR175	310198	7638877	10	0.01	0.00	0.00		0.01	0.01	0.00
BR176	310288	7638950	10	0.01	0.00	0.00		0.01	0.01	0.00
BR177	310022	7639048	10	0.01	0.12	0.01		2.19	0.05	0.40
BR178	310102	7639090	10	0.01	0.02	0.00		0.95	0.01	0.00
BR179	300080	7657623	22	25	0.01	0.02		0.24	4.34	0.01
BR190	200078	7657629	62	52	0.04	0.02		1 11	20.22	0.02
DR100	200267	7057020	02	32	0.04	0.04		1.11	20.25	0.02
BR181	300267	/65/348	12	26	0.55	0.01		0.20	36.05	0.05
BR182	300273	7657349	10	0.01	0.94	0.02		7.41	0.64	0.02
BR183	300274	7657344	10	0.01	0.40	0.00		1.12	0.32	0.01
BR184	300273	7657341	10	0.01	0.06	0.03		0.33	0.61	0.38
BR185	300282	7657338	7	16	0.15	0.01		0.21	2.90	0.30
BR186	299452	7658839	27	55	0.02	0.03		0.05	31.30	0.01
BR187	299439	7658876	10	0.01	0.36	0.01		5.66	1.01	0.02
BR188	301958	7653770	5	3	0.04	0.04		0.99	0.69	0.25
BP180	201054	7652797	10	0.01	0.02	0.01		0.55	0.03	0.11
DR100	202040	7055707	10	0.01	0.02	0.02		2.05	0.14	0.11
BR190	302049	7653644	10	0.01	0.04	0.00		2.88	0.13	0.02
BR191	302076	7653611	66	8	0.01	0.09		0.05	5.25	26.74
BR192	302206	7653386	10	0.01	0.02	0.01		0.26	0.08	0.17
BR193	302193	7653390	38	81	0.04	0.13		0.01	5.25	0.20
BR194	302299	7653268	10	0.01	0.06	0.02		2.66	0.63	0.09
BR195	302611	7652799	10	0.01	0.12	0.01		7.12	0.13	1.72
BR196	302620	7652802	256	6	0.02	0.04		0.52	0.24	9.47
BR197	302659	7652750	31	43	0.02	0.02		0.16	21.65	0.11
DR109	202055	7052750	46	45	0.02	0.02		0.10	21.05	1.1.4
BR198	302705	/05259/	40	4	0.04	0.00		0.48	3.18	1.14
BR199	302806	7652548	108	/6	0.01	10.50		0.00	0.85	0.59
BR200	302815	7652526	9	3	0.06	0.07		1.90	1.87	0.35
BR201	302842	7652503	48	5	0.09	0.13		4.97	2.58	4.10
BR202	302854	7652469	19	0.01	0.02	0.02		0.03	0.82	38.40
BR203	302883	7652415	12	116	0.00	0.08		0.01	33.25	0.04
BR204	302891	7652410	150	184	0.02	0.03		0.01	58.53	0.37
BR205	302895	7652395	10	4	0.25	0.02		2.66	3.23	4.37
BR206	202000	7652200	154	1/2	0.01	0.01		0.14	21.66	0.09
BR200	302900	7032390	104	143	0.01	0.01		0.14	49.40	1.00
BR207	302907	7652385	484	51	0.02	0.02		0.86	48.46	1.06
BR208	302909	7652380	584	141	0.01	0.02		0.29	57.37	0.23
BR209	302922	7652383	219	4	0.04	0.11		0.36	2.10	48.00
BR210	303039	7652244	46	8	0.02	0.12		0.04	2.52	2.65
BR211	303073	7652208	50	6	0.01	0.04		0.05	1.13	48.70
BR215	302157	7665067	226	1108	0.01	0.34	515.1	0.02	34.60	1.62
BR216	302183	7665036	24	116.38	0.05	0.04	0.75	0.05	38.64	0.00
BR217	302198	7665030	26	231.59	0.14	0.10	18.33	0.60	27.87	0.24
BR218	3022230	7665015	27	114 21	0.06	0.08	3 35	0.06	30.99	0.00
BR210	202227	7664006	26	1/0 72	0.00	0.00	2 11	0.00	0.20	0.00
BR219	202202	7004990	20	140.75	0.02	0.00	5.11	0.20	9.50	0.00
BRZZU	302278	7664988	20	114.73	0.02	0.02	1.01	0.22	23.95	0.01
BR221	302304	7664972	71	18.85	0.05	0.17	3.35	2.34	7.43	0.03
BR222	302308	7664972	6	5.75	0.00	0.05	0.75	0.09	1.46	0.04
BR223	301600	7666779	80	6.27	0.04	8.56	4.58	0.37	3.22	0.02
BR224	301602	7666767	25	26.49	0.09	11.57	5.14	0.39	25.01	0.00
BR225	301610	7666739	11	24.58	0.02	0.30	0.43	0.02	39.71	0.00
BR226	303272	7651945	570	3.67	0.10	0.29	4.02	1.94	0.68	18.43
BR227	303287	7651952	107	6.61	0.05	0.04	7.24	0.61	1.40	13.89
BR228	303337	7651906	38	2.63	0.01	0.03	0.68	0.09	0.48	1 52
011220	202206	7651000	55 EC	1 51	0.01	0.03	2.00	0.00	0.70	2.34
DR229	202205	70518/0	30	1.51	0.02	0.07	2.92	0.09	0.28	3.21
BK230	303385	/0518/0	10	0.35	0.07	0.03	0.09	0.70	0.03	2.68
BR231	303419	7651848	446	8.49	0.02	0.03	19.89	0.70	0.29	35.43
BR232	303482	7651717	10	4.29	0.03	4.78	0.08	0.87	0.02	0.27
BR233	304243	7653272	24	49.92	0.00	0.08	2.22	0.04	15.42	1.57
BR234	302659	7656719	8	7	0.06	0.37	0.73	0.48	7.38	0.06
BR235	302591	7656819	26	14.52	0.02	0.51	0.26	0.23	11.82	0.04
BR236	302544	7656882	189	27.4	0.01	0.77	48.27	0.03	9.52	31.24
BR227	302542	7656822	200	7 71	0.02	6 30	9 0.8	0.08	0.50	10.77
BD320	300603	7664052	23	22.00	0.02	0.35	1.65	0.00	30.04	0.77
00230	200093	7004053	20	22.90	0.02	0.43	1.00	0.22	39.04	4.00
вк239	300526	/064540	30	5.64	0.00	0.8/	5.86	0.12	4.13	4.96
BR240	300510	7664588	10	4.29	0.03	1.31	3.25	0.76	2.80	0.18
BR241	300502	7664621	24	7.32	0.01	3.22	2.71	0.18	0.30	0.21
BR242	300431	7664784	10	2.32	0.05	0.15	0.41	0.77	4.59	0.11
BR243	300348	7656313	32	1.98	0.09	0.05	2.92	2.08	0.21	0.72
BR244	300329	7656222	10	0.78	0.25	0.02	0.12	7.09	0.54	0.05

Appendix A– Grab Sampling Results Braeside June 2018 – page 1

Grab Sampling Results Braeside June 2018 – page 2

BR245	300307	7656363	7	1.6	0.07	0.03	2.55	0.71	0.09	0.07
BR246	300260	7656415	9	1.63	0.08	0.01	7.14	1.99	0.09	0.04
BR247	300230	7656456	13	2.27	0.31	0.01	4.48	0.40	0.27	0.05
BR248	299954	7656789	18	40.87	0.07	0.01	0.47	1.09	9.50	0.22
BR249	299942	7656800	138	30.59	0.14	0.03	1.73	0.26	7.18	12.34
BR250	299330	7657350	7	0.84	0.32	0.01	0.15	6.88	0.04	0.08
BR251	299246	7657477	6	1.24	0.76	0.00	0.05	3.03	0.16	0.15
BR252	299164	7657534	10	1.74	2.48	0.00	0.05	7.40	0.27	0.01
BR253	299826	7656907	7	1.73	0.48	0.01	0.13	3.96	0.30	0.01
BR254	302052	7657741	10	0.76	0.36	0.01	0.07	7.73	0.19	0.08
BR255	302047	7657750	25	39.96	0.06	0.02	25.66	0.10	15.56	3.59
BR256	302045	7657754	21	52.71	0.01	0.01	0.22	0.11	38.05	0.05
BR257	302037	7657797	16	47.9	0.01	0.02	0.28	0.03	35.39	0.03
BR258	302027	7657790	10	7.65	0.11	0.01	0.12	3.50	8.38	2.78
BR259	302018	7657815	14	14.05	0.02	0.02	1.3	0.08	12.84	0.03
BR260	302004	7657828	64	102.05	0.05	20.48	23.38	0.05	0.66	2.78
BR261	301945	7657994	10	25.18	0.01	0.06	2.14	0.13	16.18	0.01
BR262	301935	7658022	10	15.44	0.01	0.58	5.14	0.09	1.61	0.05
BR265	301921	7658040	21	14.76	0.04	0.02	2.96	0.54	24.45	0.01
BR266	301922	7658074	75	3.53	0.36	0.21	12.61	0.12	6.70	0.06
BR267	301912	7658114	32	25.29	0.01	0.02	4.69	0.08	13.68	0.02
BR268	301749	7658667	10	0.18	0.03	0.26	0.8	0.11	0.93	0.09
BR269	301731	7658780	10	0.59	0.12	0.01	0.3	0.49	0.43	0.01
BR270	300989	7659356	10	2.59	0.01	0.08	0.33	0.11	0.12	0.09
BR271	300027	7660441	12	4.89	0.05	0.04	1.05	0.71	1.40	0.03
BR272	300030	7660437	49	5.49	0.06	1.03	0.26	2.73	0.04	0.11
BR273	299889	7660627	51	114.17	0.01	0.00	3.55	0.01	41.46	1.35
BR274	299709	7660754	32	50.49	0.05	0.07	0.9	0.93	39.28	0.02
BR275	299781	7660873	10	8.02	0.05	0.01	0.93	1.83	3.53	0.35
BR276	299663	7661007	82	61.49	0.03	0.02	0.2	1.34	27.95	1.17
BR277	299632	7661049	19	4.14	0.01	0.11	0.12	0.28	5.31	0.41
BR278	298978	7657618	10	2.61	4.56	0.00	0.02	6.24	0.80	0.04
BR279	298998	7657614	10	0.49	0.46	0.00	0.04	6.19	0.22	0.01
BR280	298881	7657634	16	1.14	3.90	0.01	0.08	7.55	0.09	0.01
BR281	298973	7657756	13	4.85	0.95	0.00	0.04	0.10	0.42	0.03
BR282	298812	7657831	10	0.61	1.99	0.00	0.03	9.51	0.03	0.02
BR283	298787	7657842	18	0.96	2.07	0.00	0.02	9.43	0.11	0.01
BR284	298905	7657793	15	0.66	0.13	0.01	0.04	4.50	0.02	0.00
BR285	298637	7657888	10	1.16	2.95	0.00	0.04	9.45	0.04	0.01
BR286	299180	7657812	10	1.47	4.52	0.01	0.05	3.20	0.11	0.00
BR287	299093	7658104	42	1.95	3.26	0.01	0.05	6.27	0.08	0.01
BR288	298889	7658627	50	2.64	7.52	0.00	0.04	3.28	0.28	0.02
BR289	298967	7658514	10	2.35	8.16	0.00	0.07	4.53	0.21	0.01
BR290	298911	7658556	5	0.44	5.70	0.00	0.06	7.46	0.01	0.03
BR291	298902	7658626	10	2.87	1.15	0.00	0.02	5.37	0.16	0.01
BR292	298820	7658724	7	0.48	0.18	0.01	0.04	7.06	0.01	0.00
BR293	298822	7658755	10	0.28	3.81	0.00	0.03	8.31	0.02	0.01
BR294	301511	7658255	10	0.15	0.06	0.00	0.11	0.90	0.01	0.11
BR295	301514	7658268	10	2.43	0.06	0.02	0.47	0.32	0.18	0.03
BR296	301521	7658307	10	0.29	0.12	0.00	0.06	5.82	0.29	0.01
BR297	301517	7658340	25	0.84	0.02	0.01	1.79	0.38	0.02	0.16
BR298	301524	7658390	10	0.76	0.32	0.02	0.06	6.03	0.33	0.02
BR299	301517	7658502	10	0.1	0.23	0.01	0.06	3.77	0.01	1.23
BR300	301521	7658537	7	0.13	0.15	0.01	0.06	5.00	0.02	1.68
BR301	301523	7658573	10	0.08	0.20	0.01	0.07	3.60	0.00	1.66
BR302	301523	7658596	10	0.05	0.09	0.01	0.08	2.76	0.01	2.29
BR303	301266	7660208	44	52.63	0.08	0.10	0.02	0.05	43.65	0.05
BR304	301300	7660135	21	29	0.02	0.01	0.04	0.18	40.32	0.00
BR305	301147	7660471	16	83.94	0.06	0.02	0.06	0.01	40.99	0.01
BR306	300994	7660679	10	4.6	0.03	0.01	0.09	1.71	3.69	0.02
BR307	300975	7660698	10	0.35	0.04	0.00	0.11	2.49	0.12	0.01
BR308	300949	7660725	10	1.55	0.12	0.02	0.05	4.58	0.31	0.04
BR309	300930	7660754	10	0.3	0.02	0.00	0.05	0.96	0.09	0.00
BR310	300979	7661197	12	1.22	0.10	0.00	0.3	5.03	0.16	0.06
BR311	300938	7661178	8	1.79	0.12	0.01	0.09	2.77	2.33	0.07
BR312	300698	7661915	10	0.63	0.09	0.00	0.53	5.62	0.28	0.09
BR315	299807	7663042	10	0.27	0.12	0.01	0.18	6.10	0.53	0.03
BR316	299922	7663002	67	22.38	0.01	3.39	1.32	0.33	17.90	0.02

Grab Sampling Results Braeside June 2018 – page 3

BR317	300077	7663195	10	0.83	0.15	0.01	0.26	7.32	0.06	0.00
BR318	305598	7646757	37	61 52	0.13	0.09	1 13	0.38	32.97	0.58
BP210	206545	7646050	/1	72.01	0.02	0.05	0.02	0.00	12 14	0.00
BR319	200250	7040330	41	2.01	0.02	0.23	0.02	0.03	43.14	0.00
BR320	299359	7664200	10	3.77	0.10	0.03	0.09	0.42	2.25	0.05
BR321	296813	7666020	22	12.24	0.05	0.07	0.08	0.07	12.34	0.00
BR322	296721	/66610/	8	1.01	0.45	0.03	0.05	6.82	0.56	0.00
BR323	296646	7666228	117	38.36	0.06	0.01	0.03	0.14	22.07	0.00
BR324	299663	7663095	53	9.64	0.01	0.01	2.12	0.11	5.33	0.40
BR325	298146	7658234	20	0.6	0.18	0.01	0.05	0.93	0.25	0.20
BR326	298140	7658207	37	0.34	0.00	0.03	0.16	0.01	0.03	0.14
BR327	298067	7657964	160	2.93	0.01	0.05	0.05	0.02	0.18	0.42
BR328	298044	7657941	41	5.59	0.00	0.03	0.09	0.00	0.42	1.83
BR329	298607	7657406	209	1.87	0.09	0.04	0.13	0.04	0.67	0.79
BR330	295863	7658602	201	100.42	0.03	0.02	2.23	0.77	27.82	1.98
BR331	295994	7666929	18	1.52	1.59	0.00	0.05	8.68	0.51	0.03
BR332	299020	7668120	37	15.27	0.00	0.01	0.2	0.10	20.15	0.15
BR333	298999	7668142	19	1 23	0.01	0.02	0.12	0.07	0.25	0.10
BD224	200001	7669155	66	15 7/	0.01	0.02	12.67	0.07	2.06	2 12
DD22E	200007	7669140	00	2.64	0.00	0.30	1 16	0.00	2.00	0.45
BR335	299007	7008140	92	2.04	0.00	0.10	1.40	0.07	2.02	0.45
BR330	298920	7008408	148	0.15	0.01	0.10	0.50	0.41	2.45	4.54
BR337	298916	/008419	56	b.15	0.01	0.09	/.41	0.35	14.66	5.06
BK338	298916	/668421	27	0.75	0.01	0.07	0.98	0.62	0.68	0.61
BR339	298912	7668414	56	1.44	0.01	0.00	0.23	0.34	1.99	0.22
BR340	298898	7668470	39	1.79	0.01	0.01	1.34	0.18	0.40	0.33
BR341	298854	7669178	34	12.79	0.01	0.04	0.2	0.47	9.12	0.01
BR342	298853	7669172	21	6.56	0.03	0.01	0.15	1.97	8.62	0.01
BR343	298839	7669184	38	91.97	0.01	0.06	0.04	0.02	41.94	0.00
BR344	298304	7669922	10	0.72	0.01	0.08	0.18	0.84	0.44	0.01
BR345	297998	7670322	12	12.86	0.01	0.03	0.51	0.11	1.67	0.00
BR346	298101	7670208	51	0.82	0.28	0.02	0.42	0.16	0.30	0.01
BR347	298121	7670184	16	0.51	0.01	0.06	0.45	0.24	0.36	0.04
BR348	297702	7670820	8	0.29	0.06	0.17	0.56	0.05	0.31	0.06
BP240	207661	7670020	6	0.25	0.00	0.17	1 17	0.05	0.51	0.00
DR345	207522	7671164	0	0.50	0.01	0.00	2.20	0.25	0.03	0.05
DR350	297555	7071104	0	0.04	0.00	0.15	2.30	0.47	0.47	0.10
BR351	297393	7674919	10	0.10	0.06	0.00	0.08	2.81	0.14	0.02
BR352	29/362	/6/488/	61	26.77	0.05	0.03	1.83	0.32	32.33	0.08
BR353	297395	7675015	8	0.51	0.16	0.00	0.12	5.59	0.47	0.11
BR354	297545	7674942	8	2.31	0.09	0.00	0.27	4.88	2.10	0.16
BR355	297309	7674953	12	1.06	0.05	0.00	0.12	0.62	1.22	0.03
BR356	297325	7674912	148	28.39	0.03	0.03	1.6	0.08	32.08	0.62
BR357	297260	7675193	20	9.66	0.05	0.00	0.45	1.48	15.36	0.04
BR358	297276	7675131	21	11.6	0.06	0.00	0.21	0.90	10.37	0.12
BR361	298923	7658590	10	1.11	5.30	0.01	0.1	2.92	0.25	0.01
BR362	298854	7658660	10	1.28	3.55	0.01	0.07	6.73	0.23	0.11
BR363	298879	7658638	10	0.87	6.18	0.00	0.13	3.88	0.20	0.01
BR364	298875	7658629	5	0.62	0.15	0.00	0.02	4.60	0.08	0.00
BR365	298883	7658600	5	1.05	6.29	0.00	0.02	5.25	0.06	0.01
BR366	298882	7658584	10	0.87	4.53	0.00	0.05	6.98	0.19	0.01
BR367	298885	7658562	6	1.68	6.56	0.00	0.07	4.73	0.25	0.03
BR368	298929	7658492	10	1.15	1.99	0.00	0.02	8.48	0.16	0.00
BR369	298940	7658462	10	2.58	1.69	0.01	0.04	8,15	0.43	0.05
BR370	298827	7658701	10	1.65	6.00	0.01	0.04	6 10	0.45	0.00
D0370	200007	7659702	10	1.05	2 27	0.00	0.03	5.05	0.07	0.00
003/1	230033	7650703	10	1.52	5.52 7 72	0.01	0.03	2.05	0.22	0.01
DK3/2	230030	7030/04	10	1.53	1.13	0.01	0.01	2.09	0.42	0.02
BK3/3	298849	7058/01	10	0.86	4.56	0.00	0.04	3.70	0.09	0.01
BK374	299031	/658682	7	4.02	0.07	0.18	1.39	0.29	1.44	0.95
BR375	299053	7657719	10	0.99	2.51	0.00	0.03	4.13	0.07	0.01
BR376	299054	7657722	15	1.33	4.45	0.01	0.12	7.28	0.10	0.05
BR377	299061	7657730	10	0.41	4.59	0.00	0.01	7.43	0.04	0.00
BR378	299010	7657620	7	0.84	3.00	0.00	0.01	7.81	0.08	0.01
BR379	298872	7657652	209	0.7	3.99	0.00	0.02	8.72	0.08	0.02
BR380	298805	7657212	19	0.56	0.18	0.01	0.44	0.56	0.04	0.80
BR381	299011	7668137	38	27.43	0.02	5.34	18	0.69	0.33	0.41
BR382	299043	7668103	25	20.37	0.01	0.10	2.33	0.02	34.96	0.20
BR383	299278	7667772	10	0.48	0.04	0.04	0.17	0.04	0.14	0.61
BR384	301514	7658500	10	0.73	0.21	0.01	0.13	3 26	1 16	1 57
01.304	201214	/030300	10	0.75	0.21	0.01	0.10	5.20	1.10	1.57