

ASX ANNOUNCEMENT

13 June 2018

Strong drill results continue to confirm scope to materially expand Bombora gold Resource

Step-out drilling intersections of 21m @ 5.74g/t Au and 20m @ 4.20g/t Au include new mineralised zone in southern part of deposit

Highlights

- Extensional and infill diamond and RC drilling results continue to confirm scope to significantly increase the recently announced 624,000oz maiden Mineral Resource¹ at the Lake Roe Project in WA
- × Latest drilling results include:

Hole No.	Interval @ g/t gold (0.2g/t lower cut)	From	То		Interval @ g/t gold (0.5-3.0g/t lower cut)	From
BBRD0819	21m @ 5.74g/t	273	294	incl	13m @ 9.12g/t	281
				incl	12m @ 9.8g/t	282
				incl	11m @ 10.47g/t	283
BBRC0832	20m @ 4.2g/t	8	28	incl	4m @ 15.49g/t	16
BBRD0755	5.2m @ 7.36g/t	142.3	147.5	incl	2.1m @ 16.07g/t	145.4
				incl	1.4m @ 22.8g/t	145.4
	10.5m @ 0.9g/t	201.5	212	incl	6.5m @ 1.23g/t	201.5
				incl	1m @ 4.13g/t	201.5
BBRC0836	6m @ 6.74g/t	158	164	incl	4m @ 9.98g/t	158
	16m @ 1.13g/t	172	188	incl	4m @ 3.63g/t	172
BBRC0830	4m @ 3.05g/t	112	116			
	20m @ 1.76g/t	128	148	incl	4m @ 5.97g/t	136
				incl	8m @ 3.81g/t	132
	8m @ 1.45g/t	172	180	incl	4m @ 2.13g/t	176

- All but one of the 38 drill holes intersected significant gold mineralisation and over half of the drill holes are extensional in nature (outside Resource)
- The results include significant extensions to the sub-vertical Tura lode (BBRD0819; 21m @ 5.74g/t Au); Consistent plus 30 gram metre intercepts are now evident over a 250m strike length situated mostly outside the current Resource (open along strike and at depth)
- The results also include a new, shallow mineralised zone (BBRC0832; 20m @ 4.2g/t Au) discovered while drilling for deeper mineralisation in the southern part of the deposit
- Drilling continues with four drill rigs with the initial objective of delineating 700-800,000oz of open pit mineralisation within the next 7-11 months to provide a base case for a standalone development

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au

Website: www.breakerresources.com.au

ASX Code: BRB ACN: 145 011 178

Breaker Resources NL (ASX: BRB) is pleased to announce further high-grade drilling results that continue to confirm scope to significantly increase the recently announced 624,000oz maiden Resource¹ at the Lake Roe gold project, 100km east of Kalgoorlie, WA. The maiden Mineral Resource of 18 April 2018 extends to 130m-200m below surface (**mbs**) and is limited by the extent of drilling.

The new results relate to 8,952m of drilling (20 diamond drill holes and 18 reverse circulation (**RC**) drill holes) undertaken in the south-central and northern parts of the 2.2km-long Bombora discovery zone (Figure 1). Over half of the drill holes are extensional in nature (outside Resource).

The drilling represents the thirteenth round of results since the commencement of resource drilling in February 2017 and forms part of an ongoing program that is progressively closing the drill hole spacing to a nominal 40m x 20m over the full length of the 2.2km-long Bombora discovery.

Breaker Executive Chairman Tom Sanders said that the two rounds of drilling results following the maiden Resource in April 2018 have each confirmed significant extensional gold mineralisation.

"There is an emerging pattern which provides a solid basis for expecting that the gold resource will grow quickly," Mr Sanders said.

"We are now aiming to delineate 700-800,000oz of open pit mineralisation within the next 7-11 months to provide a base case for a standalone development subject to appropriate feasibility studies.

"This does not include the high-grade underground potential that is becoming increasingly evident in areas like the Tura lode.

"The results to date indicate that Bombora is a major greenfields gold discovery in the early stages of delineation and I expect that we will be drilling and building value at the Lake Roe Project for several years to come.

"Our maiden Resource effectively represents the shallow, 2km-long portion of an 8km-long greenfields gold system that we have tested to date. It is a solid foundation for growth and not an end result."

Photo 1: Lake Roe Lake RC Drilling

Photo 2: Lake Roe Land RC Drilling

RC & Diamond Drill Program

The drilling comprised 18 RC drill holes (3,762m), 10 RC-precollared diamond drill holes (2,821m) and 10 diamond drill holes (2,369m) for a total of 8,952m (38 drill holes).

The new drill holes are located in plan on Figure 1 which also summarises selected drill results. Approximately half of the drill holes are located outside the Mineral Resource of 18 April 2018 which extends to 130m-200mbs and is limited by the extent of drilling.

Further details of the RC and diamond drilling are provided in Appendix 1 and Annexure 1. Selected results are shown in plan on Figure 1 and in long-section on Figure 2.

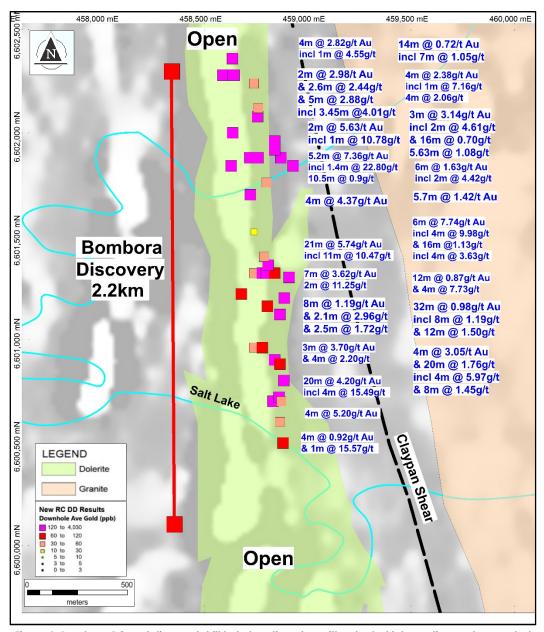
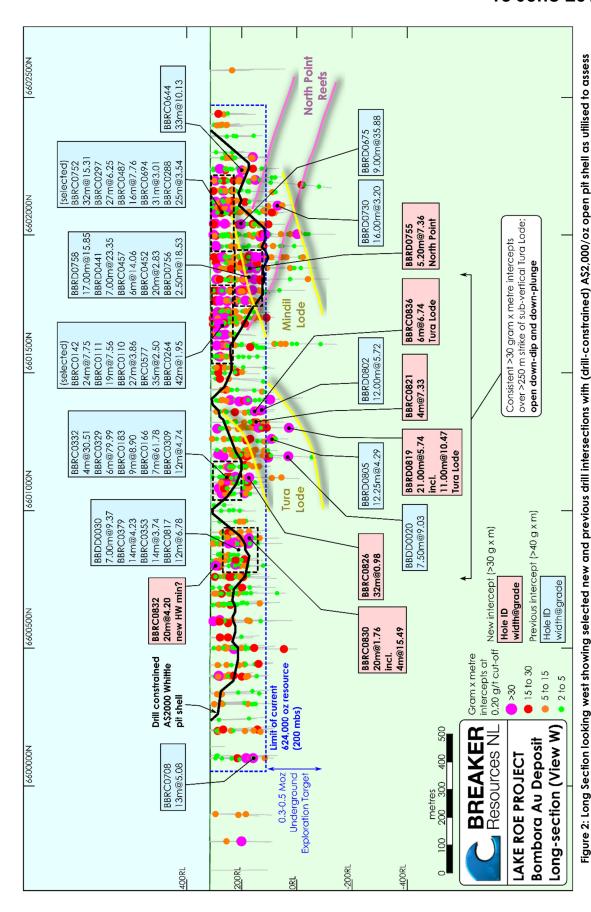



Figure 1: Bombora RC and diamond drill hole location plan with selected intersections colour-coded by average downhole gold over aeromagnetic image with interpreted geology

sensitivity of Mineral Resource of 18 April 2018 (all intersections by down-hole length)

Results

Selected drill hole intersections are located and summarised in Figures 1 and 2. A full list of assay results above a nominal lower cut-off grade of 0.2g/t Au are provided in Appendix 1.

More significant intersections at differing cut-off grades are summarised in Table 1 below.

Hole No.	Interval @ g/t gold (0.2g/t lower cut)	From	То		Interval @ g/t gold (0.5-3.0g/t lower cut)	From
BBRD0088	1m @ 15.57g/t	265	266			
BBRD0755	5.2m @ 7.36g/t	142.3	147.5	incl	2.1m @ 16.07g/t	145.4
					1.4m @ 22.8g/t	145.4
	10.5m @ 0.9g/t	201.5	212	incl.	6.5m @ 1.23g/t	201.5
				incl.	1m @ 4.13g/t	201.5
BBRD0762	5m @ 2.88g/t	232	237	incl.	3.45m @ 4.01g/t	232.55
				incl.	1.45m @ 8.76g/t	232.55
BBRD0780	2m @ 5.63g/t	227	229	incl.	1m @ 10.78g/t	227
BBRD0819	21m @ 5.74g/t	273	294	incl.	13m @ 9.12g/t	281
				incl.	12m @ 9.8g/t	282
				incl.	11m @ 10.47g/t	283
BBRC0821	12m @ 0.87g/t	116	128	incl.	5m @ 1.51g/t	123
				incl.	1m @ 4.23g/t	127
	4m @ 7.33g/t	156	160			
BBRC0822	7m @ 3.62g/t	164	171	incl.	3m @ 8.1g/t	167
				incl.	2m @ 11.25g/t	167
BBRC0823	3m @ 3.7g/t	165	168	incl.	1m @ 7.77g/t	165
BBRC0826	32m @ 0.98g/t	124	156	incl.	8m @ 1.19g/t	124
				incl.	12m @ 1.5g/t	140
				incl.	8m @ 1.81g/t	144
BBRC0830	4m @ 3.05g/t	112	116			
	20m @ 1.76g/t	128	148	incl.	4m @ 5.97g/t	136
				incl.	8m @ 3.81g/t	132
	8m @ 1.45g/t	172	180	incl.	4m @ 2.13g/t	176
BBRC0832	20m @ 4.2g/t	8	28	incl.	4m @ 15.49g/t	16
BBRC0833	4m @ 5.2g/t	112	116			
BBRC0836	6m @ 6.74g/t	158	164	incl.	4m @ 9.98g/t	158
	16m @ 1.13g/t	172	188	incl.	4m @ 3.63g/t	172
BBRC0846	4m @ 4.37g/t	200	204			

Table 1: Selected Drill Results

Many of the RC results are based on preliminary (4m) composite samples. The down-hole intersections reported do not represent true width as the geometry of the mineralised structures is still being assessed in several areas. Similarly, drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.

Analysis

Extensional and infill diamond and RC drilling results continue to confirm the potential to significantly increase the recently announced 624,000oz maiden Resource¹ at the Lake Roe Project.

All but one of the 38 drill holes intersected significant gold mineralisation and over half of the drill holes are extensional in nature (outside Resource).

The results include significant extensions to the sub-vertical Tura lode (BBRD0819; 21m @ 5.74g/t Au). Consistent plus 30 gram metre intercepts are now evident over a 250m strike length situated mostly outside the current Resource (open along strike and at depth).

The results also include a new, shallow mineralised zone (BBRC0832; 20m @ 4.2g/t Au) discovered while drilling for deeper mineralisation in the southern part of the deposit.

Next Steps/Strategic Direction

Drilling continues with four drill rigs with the initial objective of delineating 700-800,000oz of open pit mineralisation within the next 7-11 months to provide a base case for a standalone development.

Background

The 2.2km Bombora discovery forms part of an 8km-long greenfields gold system concealed by thin transported cover (typically 5-10m) within the 100%-owned Lake Roe Project, located 100km east of Kalgoorlie, WA.

Gold occurs in sulphide-rich lodes and quartz-sulphide stockwork zones situated preferentially in the upper, iron-rich part of a fractionated dolerite. The gold distribution is controlled by multiple, stacked, steep NNW-trending mineralised faults with "linking" flat and/or west-dipping mineralised faults that are also stacked and commonly well mineralised. Gold is commonly best developed where these mineralised faults intersect.

The sulphide lodes typically contain 2-5% pyrite and pyrrhotite accompanied by extensive silica, albite, biotite and carbonate alteration with varying amounts of (tensional) quartz-sulphide veinlets that can form zones of stockwork mineralisation.

Metallurgical test work indicates gold recoveries in the range of 96% to 99% in oxide and fresh mineralisation and gravity gold of 31% to 90%. The metallurgical testwork also indicates low-cost gold processing based on modest hardness and a relatively coarse grind size of 106-125µm (ASX Release 15 January 2018).

Tom Sanders

Executive Chairman Breaker Resources NL

13 June 2018

For further information on Breaker Resources NL please visit the Company's website at www.breakerresources.com.au, or contact:

Investors/Shareholders

Tom Sanders

Tel: +61 8 9226 3666

Email: breaker@breakerresources.com.au

Media

Paul Armstrong/Nicholas Read

Read Corporate

Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report that relates to the Mineral Resource is based on and fairly represents information and supporting documentation compiled by Christine Shore, who is a Competent Person and a Member of the Australasian Institute of Mining and Metallurgy. Ms Shore is a full time employee of Breaker Resources NL. Ms Shore has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Shore consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

¹ Mineral Resource (for further details please refer to the Company's ASX announcement of 18 April 2018)

JORC Mineral Resource*			
Classification	Tonnes	g/t gold	Ounces
Indicated	5,276,000	1.6	264,000
Inferred	6,600,000	1.7	360,000
Total	11,876,000	1.6	624,000

^{*} Lower cut-off grade of 0.2g/t Au reported above 0.5g/t Au; Variable top cuts used; All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC0820	Extensional	150	6601320	458740	311.7857	-60.07	268.08	88	92	4	0.81	Composite
								104	108	4	0.28	Composite
BBRC0821	Extensional	180	6601320	458780	312.8748	-59.93	270.58	116	128	12	0.87	Composite/Split
								123	128	5	1.51	Split
				inclu	ding		1	127	128	1	4.23	Split
								156	160	4	7.33	Composite
BBRC0822	Extensional	210	6601320	458800	313.0861	-60.48	269.08	132	136	4	0.32	Composite
								144	148	4	0.80	Composite
								164	171	7	3.62	Split
				inclu				167	170	3	8.10	Split
				inclu			1	167	169	2	11.25	Split
BBRC0823	Extensional	240	6601320	458840	312.7595	-58.92	271.98	165	168	3	3.70	Split
				inclu	ding		1	165	166	1	7.77	Split
								172	176	4	0.24	Composite
								192	196	4	0.26	Composite
								200	204	4	2.22	Split
				inclu				200	202	2	4.04	Split
				inclu				201	202	11	5.17	Split
BBRC0824	Infill	180	6601220	458679	311.9083	-56.37	90.58	120	125	5	0.41	Split
			1	inclu	ding			121	122	1	0.85	Split
								124	125	1	0.59	Split
								160	165	5	1.69	Split
				inclu				161	164	3	2.47	Split
				inclu		/1.07	070.50	162	163	1	4.93	Split
BBRC0825	Extensional	216	6601160	458805	311.6611	-61.07	270.58	117	120	3	1.22	Split
				inclu	ding			119	120	1	2.89	Split
								124	132	8	0.31	Composite
								150	154	4	1.33	Split
				inclu				151	153	2	2.33	Split
			1	inclu	aing I			151	152	1	3.53	Split
PPPC000/	Forton et a const	0/4	//01100	450075	211 / 427	/1.7/	0/5 40	172	176	4	1.53	Composite
BBRC0826	Extensional	264	6601120	458865	311.6437	-61.74	265.48	92	96		0.69	Composite
				inalu	diaa			124	156	32	0.98	Composite
				inclu				124	132	8	1.19	Composite
				ar inclu				140 144	152 152	12 8	1.50 1.81	Composite Composite
				II ICIO	uiig			252	260	8		Composite
BBRC0827	Infill	120	6600960	458740	311.6646	-61.32	270.18	64	68	4	0.95 0.44	Composite
BBRCU627	1111111	120	0000700	430740	311.0040	-01.32	2/0.10	88	92	4	0.44	Composite
BBRC0828	Infill	162	6600960	458780	311.6223	-63.55	266.88	12	16	4	0.25	Composite
DDRC0020	111111	102	0000700	400700	011.0223	-00.00	200.00	100	108	8	0.23	Composite
								112	124	12	0.63	Composite
	†		1	inclu	dina			112	116	4	0.78	Composite
BBRC0830	Extensional	246	6600900	458840	311.5849	-60.27	269.08	112	116	4	3.05	Composite
DDRCOOO	EXICIISIONAI	210	0000700	100010	011.0017	00.27	207.00	128	148	20	1.76	Composite
				inclu	dina			132	140	8	3.81	Composite
				inclu				136	140	4	5.97	Composite
								160	164	4	0.64	Composite
								172	180	8	1.45	Composite
				inclu	dina		1	176	180	4	2.13	Composite
BBRC0831	Extensional	258	6600880	458865	311.5932	-60.61	269.88	108	124	16	0.54	Composite
	2,000,000		5555555	.00000	30702	55.01		140	144	4	0.69	Composite
								170	173	3	1.42	Split
	†		1	inclu	ding		1	170	172	2	2.00	Split
				inclu				171	172	1	3.34	Split
								174	175	1	0.28	Split

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC0832	Extensional	214	6600800	458885	311.6994	-60.61	267.88	8	28	20	4.20	Composite
				inclu	ding			16	20	4	15.49	Composite
								84	92	8	0.46	Composite
								112	116	4	0.23	Composite
								120	124	4	1.49	Composite
								188	192	4	0.69	Composite
								208	212	4	0.31	Composite
BBRC0833	Extensional	234	6600720	458862	312.2438	-61.36	267.78	89	92	3	0.52	Split
				inclu	ding			90	91	1	1.01	Split
								112	116	4	5.20	Composite
								138	146	8	0.59	Split
				inclu	ding			139	141	2	1.13	Split
				inclu	ding			139	140	1	1.53	Split
								144	145	1	1.20	Split
BBRC0834	Extensional	228	6600700	458872	312.0234	-59.4	270.68	117	119	2	1.44	Split
				inclu	ding			117	118	1	2.67	Split
								123	124	1	0.21	Split
								128	132	4	0.53	Composite
								144	148	4	0.91	Split
				inclu				147	148	1	1.77	Split
BBRC0836	Infill	230	6601360	458808	313.18	-60.82	268.28	136	142	6	0.51	Composite
			1	inclu	ding			140	141	1	1.72	Split
								158	164	6	6.74	Split
				inclu	ding			158	162	4	9.98	Split
								172	188	16	1.13	Composite
				inclu	ding			172	176	4	3.63	Composite
								199	201	2	0.78	Split
				inclu	ding			199	200	1	1.08	Split
BBRC0837	Infill	204	6601400	458788	312.1431	-61.85	266.78	152	156	4	0.40	Composite
								159	163	4	1.16	Split
				inclu	ding			159	161	2	1.93	Split
								162	163	1	0.61	Split
BBRC0841	Infill	216	6601520	458740	311.6893	-61.27	266.58					
BBRC0846	Infill	210	6601700	458723	311.7403	-62.67	269.68	124	128	4	0.52	Composite
								164	168	4	0.25	Composite
								200	204	4	4.37	Composite
BBRD0088	Extensional	312.4	6600497	458881	311.965	-59.34	270.08	62	64	2	0.34	Split
								90	91	1	0.56	Split
								125	129	4	0.92	Split
				inclu	ding			125	127	2	1.10	Split
								128	129	1	1.46	Split
								131	132	1	0.49	Split
								229	230	1	0.48	Half Core
								233	234	1	0.80	Half Core
								265	266	1	15.57	Half Core
								286	287.3	1.3	0.63	Half Core
BBRD0750	Infill	165.8	6602280	458640	313.16	-60	270	49	50	1	0.21	Split
								65	66	1	0.22	Split
								75	76	1	0.24	Split
								78	82	4	2.82	Split
			1	inclu	ding			80	81	1	4.55	Split
								128	129	1	0.61	Split
								148	149	1	0.80	Split
BBRD0751	Infill	180.12	6602280	458660	313.1669	-60.05	271.98	52	56	4	0.34	Composite
								84	90	6	0.49	Half Core
								88	89.11	1.1	1.06	Half Core
								112	113	1	0.25	Half Core
								137	138.21	1.21	0.29	Half Core
								145	146	1	0.21	Half Core
								149	154	5	1.55	Half Core
								149	153.22	4.22	1.79	Half Core
									153.22			Half Core

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0755	Infill	276.3	6601880	458759	314.605	-62.09	269.08	88	89	1	0.36	Split
								138.2	139.7	1.5	0.86	Half Core
								142.3	147.5	5.2	7.36	Half Core
				inclu	ding			145.4	147.5	2.1	16.07	Half Core
				inclu	ding			145.4	146.8	1.4	22.80	Half Core
								166	167	1	1.56	Half Core
								171	172	1	0.29	Half Core
								179	181	2	0.25	Half Core
								193.48	195.5	2.02	0.38	Half Core
								201.5	212	10.5	0.90	Half Core
				inclu				201.5	208	6.5	1.23	Half Core
				inclu	ding		1	201.5	202.5	1	4.13	Half Core
								207	208	1	1.28	Half Core
								210	212	2	0.75	Half Core
BBRD0762	Infill	267.6	6602080	458757	314.5927	-59.96	269.68	50	55	5	0.65	Split
				inclu	ding		1	50	51	1	2.01	Split
								89	90	1	0.44	Split
								136.5	138.5	2	2.98	Half Core
				inclu	ding		1	137.5	138.5	1	5.60	Half Core
								176	183	7	0.64	Half Core
	ļ			inclu	_			176	182	6	0.70	Half Core
				inclu	ding		Т	177	178	1	1.26	Half Core
	ļ							181	182	1	1.53	Half Core
								203	205	2	0.95	Half Core
				inclu	ding		ı	204	205	1	1.49	Half Core
								216.6	218.3	1.7	0.65	Half Core
								226.4	229	2.6	2.44	Half Core
								232	237	5	2.88	Half Core
				inclu	ding			232.55	236	3.45	4.01	Half Core
				inclu	ding			232.55	234	1.45	8.76	Half Core
BBRD0766	Extensional	255.68	6602120	458760	314.1493	-59.94	271.28	126	127	1	1.11	Split
								207.1	210.2	3.1	0.60	Half Core
								226	227	1	0.24	Half Core
BBRD0771	Infill	237.74	6602240	458740	313.9784	-61	270.48	51	52	1	0.76	Split
								99	100	1	0.28	Split
								139	141	2	0.41	Half Core
								150	151	1	0.46	Half Core
								158	159	1	0.68	Half Core
								162	163	1	0.33	Half Core
								166	168	2	0.28	Half Core
								182	185	3	0.46	Half Core
BBRD0779	Extensional	354.8	6601919	458840	313.8587	-60.68	268.78	153	155	2	0.78	Half Core
				inclu	ding			154	155	1	1.36	Half Core
								207	208	1	0.65	Half Core
								220	223	3	3.14	Half Core
				inclu	ding			220	222	2	4.61	Half Core
				inclu				221	222	1	6.73	Half Core
								229	230	1	0.21	Half Core
								239	240	1	0.31	Half Core
								244	245	1	0.22	Half Core
								246	249	3	0.56	Half Core
				inclu	ding			247	248	1	1.07	Half Core
								252	268	16	0.70	Half Core
				inclu	ding		•	252	253	1	2.10	Half Core
								256.5	268	11.5	0.68	Half Core
			•	inclu	dina		•	256.5	258	1.5	1.81	Half Core
								271	282	11	0.59	Half Core
	•	l						275	280	5	0.80	Half Core
							1				2.50	
				inclu	dina			276	277	1	1.64	Half Core
			<u> </u>	inclu	ding			276 278	277 279	1	1.64	Half Core
				inclu	ding			278	279	1	1.19	Half Core
				inclu	ding							

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0779								308	309	1	0.35	Half Core
(confinued)								311	317	6	0.26	Half Core
				inclu	ding		1	316	317	1	0.52	Half Core
								324	328	4	0.62	Half Core
								332.37	338	5.63	1.08	Half Core
				inclu	_			332.37	336	3.63	1.53	Half Core
				inclu	ding		1	332.37	334	1.63	2.41	Half Core
								335	336	1	1.05	Half Core
BBRD0780	Extensional	348.27	6601960	458840	314.3899	-59.49	263.98	158	159	1	0.28	Half Core
								219	220	1	1.59	Half Core
					<u>. </u>			227	229	2	5.63	Half Core
				inclu	aing I I			227	228	1	10.78	Half Core
	 			inalu	din a			252	258	6	0.65	Half Core
	+			inclu	aing I I			257	258	1	2.65	Half Core
	 			inalu	din a			261	263	2	1.11	Half Core
				inclu	l I			261 267	262 271	4	1.64	Half Core Half Core
			ļl	inclus	dina			267	268	1	0.49 0.96	
				inclu					279			Half Core
								277.5 284	285	1.5 1	0.94	Half Core Half Core
								288	289	1	0.83	Half Core
								305	306	1	4.17	Half Core
	1							313	314	1	0.36	Half Core
BBRD0808	Extensional	287.63	6601200	458887	311.6163	-58.97	267.48	149	157	8	1.19	Half Core
DDRDGGG	Exicusional	207.00	0001200	inclu		50.77	207.40	154	157	3	2.38	Half Core
				1110101				164	165	1	0.20	Half Core
								166	168	2	0.46	Half Core
								188	190.1	2.1	2.96	Half Core
								217	219.5	2.5	1.72	Half Core
				inclu	ding			217	218.5	1.5	2.58	Half Core
BBRD0819	Extensional	314.94	6601300	458910	311.6383	-59.92	270.08	179.6	183	3.4	0.92	Half Core
				inclu	ding			180	181	1	1.59	Half Core
								182	183	1	1.34	Half Core
								264	265	1	0.30	Half Core
								273	294	21	5.74	Half Core
			•	inclu	ding			282	294	12	9.80	Half Core
	1											
				inclu	ding			283	294	11	10.47	Half Core
BBDD0049	Extensional	428.55	6601840		ding 311.9472	-61.35	258.88	283 287.6	294 288.7	1.1	10.47 1.97	Half Core Half Core
BBDD0049	Extensional	428.55	6601840	inclu		-61.35	258.88					
BBDD0049	Extensional	428.55	6601840	inclu		-61.35	258.88	287.6	288.7	1.1	1.97	Half Core
BBDD0049	Extensional	428.55	6601840	inclu	311.9472	-61.35	258.88	287.6 347 348.6 349.5	288.7 348 355.2 355.2	1.1 1 6.6 5.7	1.97 0.20 1.27 1.42	Half Core Half Core Half Core Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366	288.7 348 355.2 355.2 367	1.1 1 6.6 5.7	1.97 0.20 1.27 1.42 0.30	Half Core Half Core Half Core Half Core Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366 368	288.7 348 355.2 355.2 367 369	1.1 1 6.6 5.7 1	1.97 0.20 1.27 1.42 0.30 0.31	Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366 368 370	288.7 348 355.2 355.2 367 369 372	1.1 1 6.6 5.7 1 1 2	1.97 0.20 1.27 1.42 0.30 0.31 0.27	Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366 368 370 379.1	288.7 348 355.2 355.2 367 369 372 380.5	1.1 1 6.6 5.7 1 1 2 1.4	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75	Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366 368 370 379.1 383	288.7 348 355.2 355.2 367 369 372 380.5 384	1.1 1 6.6 5.7 1 1 2 1.4	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39	Half Core
BBDD0049	Extensional	428.55	6601840	includ 458930	311.9472	-61.35	258.88	287.6 347 348.6 349.5 366 368 370 379.1 383 407	288.7 348 355.2 355.2 367 369 372 380.5 384 408	1.1 1 6.6 5.7 1 1 2 1.4 1	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25	Half Core
				includ	311.9472			287.6 347 348.6 349.5 366 368 370 379.1 383 407 410	288.7 348 355.2 355.2 367 369 372 380.5 384 408 411	1.1 1 6.6 5.7 1 1 2 1.4 1	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28	Half Core
BBDD0049	Extensional Extensional	428.55	6601840	includ 458930	311.9472	-61.35 -60.93	258.88	287.6 347 348.6 349.5 366 368 370 379.1 383 407 410 82	288.7 348 355.2 355.2 367 369 372 380.5 384 408 411 84	1.1 1 6.6 5.7 1 1 2 1.4 1 1	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28	Half Core
				includ	311.9472			287.6 347 348.6 349.5 366 368 370 379.1 383 407 410 82 142	288.7 348 355.2 355.2 367 369 372 380.5 384 408 411 84	1.1 1 6.6 5.7 1 1 2 1.4 1 1 1 2 1	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38	Half Core
				include 458930 include 458870	311.9472 ding			287.6 347 348.6 349.5 366 368 370 379.1 383 407 410 82 142 237.79	288.7 348 355.2 355.2 367 369 372 380.5 384 408 411 84 143 240.1	1.1 1 6.6 5.7 1 1 2 1.4 1 1 1 2 1 2 1 2.31	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66	Half Core
				includ	311.9472 ding			287.6 347 348.6 349.5 366 368 370 379.1 383 407 410 82 142 237.79 238.69	288.7 348 355.2 355.2 367 369 372 380.5 384 408 411 84 143 240.1	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91	Half Core
				include 458870	311.9472 ding 313.4434			287.6 347. 348.6 349.5 366. 368. 370. 379.1 383. 407. 410. 82. 142. 237.79. 238.69. 287.	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2 1 1 41 4	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40	Half Core
				include 458870	311.9472 ding 313.4434 ding			287.6 347.348.6 349.5 366.368 370.379.1 383.407 410.82 142.237.79 238.69 287	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1 291 289	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2 1 2.31 1.41 4 2	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40 2.48	Half Core
				include 458870	311.9472 ding 313.4434 ding			287.6 347. 348.6 349.5 366. 368. 370. 379.1 383. 407. 410. 82. 142. 237.79. 238.69. 287. 287.	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1 291 289 288	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2.31 1.41 4 2	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40 2.48 3.94	Half Core
				include 458870	311.9472 ding 313.4434 ding			287.6 347.348.6 349.5 366.368 370.379.1 383.407 410.82 142.237.79 238.69 287 287 287 301.4	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1 291 289 288 308	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2.31 1.41 4 2 1 6.6	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40 2.48 3.94 0.46	Half Core
				include 458870 include	311.9472 ding 313.4434 ding ding ding			287.6 347.348.6 349.5 366.368 370.379.1 383.407 410.82 142.237.79 238.69 287.287 301.4 321.1	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1 291 289 288 308 323	1.1 1 6.6 5.7 1 1 2 1.4 1 1 1 2 1 1 2 31 1.41 4 2 1 6.6 1.9	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40 2.48 3.94 0.46 0.82	Half Core
				include 458870	311.9472 ding 313.4434 ding ding ding			287.6 347.348.6 349.5 366.368 370.379.1 383.407 410.82 142.237.79 238.69 287 287 287 301.4	288.7 348 355.2 367 369 372 380.5 384 408 411 84 143 240.1 240.1 291 289 288 308	1.1 1 6.6 5.7 1 1 2 1.4 1 1 2 1 2.31 1.41 4 2 1 6.6	1.97 0.20 1.27 1.42 0.30 0.31 0.27 0.75 0.39 1.25 0.28 0.38 0.25 0.66 0.91 1.40 2.48 3.94 0.46	Half Core

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0051	Infill	210.79	6601880	458720	314.2222	-59.51	268.88	77	79	2	0.33	Half Core
								111	117	6	1.63	Half Core
				inclu	ding			111	113	2	4.42	Half Core
				inclu	ding		1	111	112	1	7.58	Half Core
								120	121	1	0.25	Half Core
								122	123	1	0.98	Half Core
								131	146	15	0.50	Half Core
				inclu	_			131	132	1	1.90	Half Core
				an				136	138	2	0.72	Half Core
				an				140	142	2	0.56	Half Core
				an				144	146	2	0.98	Half Core
				inclu	ding I			145	146	1	1.45	Half Core
								150	152	2	3.10	Half Core
				inclu	ding I			150	151	1	3.39	Half Core
					<u> </u>			166	170	4	0.55	Half Core
				inclu	ding I			166	167	1	0.86	Half Core
		100.00	((0 1 0 4 0	450,400	01.40404	10.05	0.40.00	169	170	1	0.55	Half Core
BBDD0052	Infill	132.83	6601840	458630	314.3684	-62.85	269.28	59	60	1	0.32	Half Core
				: l				64	67	3	2.20	Half Core
				inclu	aing I			64	66	2	2.87	Half Core
								71	72	1	1.73	Half Core
								75	76	1	0.24	Half Core
								78 81.5	79 82.5	1	0.41	Half Core
								102	103	1	2.72	Half Core
								102	103	1	0.29 1.11	Half Core Half Core
								118	120	2	0.32	Half Core
								160	161	1	0.34	Half Core
								170	172	2	0.35	Half Core
BBDD0053	Extensional	294.24	6600600	458865	311.7028	-60.04	269.68	225	226	1	1.20	Half Core
BBDD0054	Infill	159.3	6602000	458637	314.8061	-62.18	266.78	39	40	1	0.22	Half Core
BBBB0034		107.0	0002000	400007	014.0001	02.10	200.70	41	44	3	0.76	Half Core
			Į.	inclu	dina			41	42	1	1.77	Half Core
					I I			58	59	1	4.08	Half Core
								61	62	1	0.22	Half Core
								66	70	4	2.38	Half Core
				inclu	ding			69	70	1	7.16	Half Core
								74	75	1	0.67	Half Core
								93	94	1	0.61	Half Core
								98	99	1	3.48	Half Core
								107	108	1	0.25	Half Core
								139	143	4	2.06	Half Core
				inclu	ding			142	143	1	6.05	Half Core
BBDD0055	Infill	189.7	6602360	458636	313.8171	-60.01	269.68	25	27	2	0.69	Half Core
								89	90	1	0.31	Half Core
								95	97	2	0.45	Half Core
		· <u></u>						116	117	1	0.49	Half Core
								157	159	2	1.32	Half Core
			,	inclu				157	158	1	2.40	Half Core
BBDD0056	Extensional	270.41	6600700		311.8089	-61.21	270.18	63	65	2	0.60	Half Core
			1	inclu	ding			64	65	1	0.87	Half Core
								86	89	3	0.91	Half Core
	ļ							86	87	1	2.19	Half Core
	ļ							103	104	1	3.97	Half Core
								238	243	5	0.44	Half Core
				inclu	ding			238	239	1	0.90	Half Core
	1							241	243	2	0.53	Half Core

Hole No.	Extensional or infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0057	Extensional	168.92	6602280	458643	312.8242	-60.07	272.18	69	71	2	2.35	Half Core
				inclu	ding			69	70	1	4.03	Half Core
								72	73	1	0.26	Half Core
								89	90	1	0.20	Half Core
								94	95	1	0.31	Half Core
BBDD0058	Infill	129.78	6602280	458590	313.6001	-59.91	268.98	42	44	2	0.33	Half Core
								49	63	14	0.72	Half Core
				inclu	ding			52	59	7	1.05	Half Core
				inclu	ding			53.5	54.6	1.1	2.54	Half Core
								56	57	1	1.75	Half Core
						•		62	63	1	1.35	Half Core
								65	66	1	0.35	Half Core
								83	84	1	0.29	Half Core

Appendix 1 Notes

- ➤ One metre riffle-split assay results pending for all composite samples.
- ▼ Grades reported above a nominal lower cut-off grade of 0.2g/t Au.
- No top assay cuts have been used.
- ▼ Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases.
- **▼** Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face-sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content. Diamond drillers measure core recoveries for every drill run completed using either

Criteria	JORC Code explanation	Commentary
		3m or 6m core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for Mineral Resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 25g subsample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.
	Whether sample sizes are appropriate to	The sample sizes are considered to be

Criteria	JORC Code explanation	Commentary
	the grain size of the material being sampled.	appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	No twinned holes drilled in this phase of drilling (several conducted previously)
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a

Criteria	JORC Code explanation	Commentary
		LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling.
		Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The infill drilling is being conducted to provide enough data to support estimation of the Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in
		a Company facility for future reference if required.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

O 11 1	10000 1 1 11	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the

Criteria	JORC Code explanation	Commentary
		project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar; • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; • dip and azimuth of the hole; • down hole length and interception depth; • hole length. If the exclusion of this information is justified	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
	on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	