

Fax: +61 8 6316 1428 Web: www.tietto.com

7 June 2018

Tietto Confirms High-grade Gold over 1,000m Strike at Gludehi Highlights:

- Assay results for diamond core tails from Gludehi (formerly named Abujar Main) logged with visible gold returned high-grade gold intercepts including:
 - > 13m @ 5.11g/t Au from 238m including 1m @ 46.98g/t Au within 5m @ 11.44g/t Au from 246m
 - 4.65m @ 8.69g/t Au from 267.35m including 0.63m @ 50.85g/t Au within 1.63m @ 21.91g/t Au from 269.63m
- High-grade gold mineralisation is reported in seven deep RC/DD holes with vertical depths ranging from 140 to 260m below surface, significantly extending the depth of known gold mineralisation
- Tietto will commence 15,000m of Reverse Circulation and Diamond Drilling at:
 - ➤ Gludehi deposit: to extend the current JORC classified Mineral Resource from a vertical depth of 180m to 300m below surface
 - ➤ Pischon deposit: to extend the current JORC classified Mineral Resource at depth and along strike to join Pischon South
 - ➤ Golikro prospect: to define a Maiden JORC Mineral Resource
- IP survey equipment arrived in preparation for a 12-month survey across the 1,114km² Abujar Project

West African gold developer and explorer Tietto Minerals Limited (ASX: TIE) (**Tietto**) is pleased to report high-grade gold intercepts at depth at its Gludehi deposit (formerly known as the Abujar Main deposit) which extend the limits of known gold mineralisation to more than 1,000m strike length. Gludehi is part of Tietto's Abujar Gold Project in Côte d'Ivoire.

Tietto Managing Director Dr Caigen Wang said:

"I am delighted with the excellent continuity of high-grade gold mineralisation over 1km strike at the northern half of the Gludehi deposit. Our extensional drilling has reported high grades and good widths at depth, suggesting excellent and almost immediate potential to grow our gold resources across the Abujar Project.

"The high-grade tenor seen in the latest results also bodes well for extending the size of the known gold resources and, eventually, for underground mining potential at this particular part of the Gludehi deposit."

Tietto Minerals Ltd Level 3, 88 William Street Perth, WA 6000 Tel: +61 8 9331 6710 Fax: +61 8 6316 1428 Web: www.tietto.com

During its maiden 2018 drilling campaign, Tietto drilled seven deep RC/DD holes over 1,100m strike length of the Gludehi deposit from section line 16 to section line 27 to test the gold mineralisation at depth. The program was successful in extending the known limits of gold mineralisation, as shown in Figure 1 - Figure 4. A listing of the high-grade gold mineralisation intercepted by the seven holes is presented in Table 1.

With these results, the known limits of high-grade gold mineralisation have been significantly extended at depth (in case of ZRD104 up to 90m vertical). The grade tenor and width of deeper intercepts such as ZRD104 (13m @ 5.11g/t Au from 238m including 5m @ 11.44g/t Au from 246m) show promise to support a future underground development once any open-pit operations are completed within a 1km strike from Line 17 to Line 27.

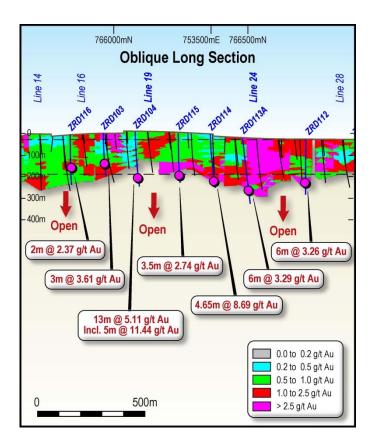


Figure 1: Oblique long section view of the Gludehi deposit from Line 17 to Line 27 within the Abujar Project

Fax: +61 8 6316 1428 Web: www.tietto.com

Table 1: Significant intercepts from 7 deep RC/DD holes over 1100m strike length under the current JORC Mineral Resource of the Gludehi deposit

m @ g/t)	Intercepts (Assay (g/t)	From (m) To (m) Assay (g/t)		Hole_ID
		4	157	156	
	3m@3.61g/t	0.02	158	157	700402
		6.8	159	158	ZRD103
	1m@8.09g/t	8.09	172	171	
		3.29	239.03	238	
3m@2.74gt		0.18	240.03	239.03	
		4.81	241	240.03	
		0.09	242	241	
		0.24	243	242	
		0.11	244	243	
	13m@5.11g/t	0.12	245	244	7004041
		0.42	246	245	ZRD104 ¹
		46.98	247	246	
		4.70	248	247	
5m@11.44g/		0.75	249	248	
		0.49	250	249	
		4.29	251	250	
	1m@3.05g/t	3.05	275	274	
	1.5m@2.06g/t	2.06	217.5	216	
		1.44	221.9	221	
	6m@3.26g/t	3.29	223	221.9	
		0.37	224.5	223	700442
		0.15	225.5	224.5	ZRD112
		9.3	227	225.5	
	1m@2.45g/t	2.45	233	232	
	1.5m@7.03g/t	7.03	245.5	244	
	1m@2.11g/t	2.11	238	237	
	1.23m@5.04g/t	5.04	260.23	259	
		7.75	275	274	
		1.65	276	275	
	C @2 20-/h	3.19	277	276	ZRD113A
	6m@3.29g/t	2.41	278	277	
		1.18	279	278	
		3.56	280	279	
	1m@5.29g/t	5.29	289	288	
		2.17	268	267.35	
	3.68	3.68	269	268	
	4.65m@8.69g/t	50.85	269.63	269	ZRD114
		1.18	271	269.63	
		1.67	272	271	
	1m@3.19g/t	3.19	219	218	
		7RD115 245 21 246 0.87		ZRD115	
3.5m@2.74g/	6.79m@1.81g/t	3.88	247	246	

-

¹ Hole ZRD104 was previously reported on 27 March 2018 at a grade of 13m @ 2.8 g/t Au. The Company noted the discrepancy between the reported assay intervals where visible gold had been reported in core samples. The Company took steps to re-evaluate the assay methodology to a larger sample size to capture coarse gold values accurately. The assays reported today are the average of three assays for each sample. The Company believes that the high value coarse gold occurrences in Gludehi diamond core samples now report correctly so as not to understate gold values.

Fax: +61 8 6316 1428 Web: www.tietto.com

	247	248	2.78		
	248	249.5	1.95		
	249.5	250	0.43		
	250	251	0.55		
	251	252	1.26		
	261	262	4.03	1m@4.03g/t	
	179	180	1.05	2m@2 27a/+	
ZRD116	180	181	3.69	2m@2.37g/t	
	250	251	4.32	1m@4.32g/t	

Based on these encouraging results Tietto will shortly initiate 15,000m of DD and RC drilling to test the mineralisation limits at depth at the Gludehi deposit.

Apart from testing the depth limits of the Gludehi deposit, the planned drilling campaign will also focus on the following:

- Pischon deposit: Tietto aims to extend the current JORC compliant Mineral Resource at depth and along strike to join Pischon South, which could also extend further south to Golikro.
- ➤ Golikro: Define a Maiden JORC Mineral Resource and test the southern extension towards Zoukpangbeu; and
- Zoukpangbeu: Drill test this prospect defined by soil geochem and pitting.

The Company has changed the name of the Abujar Main deposit to Gludehi to avoid confusion with the project name Abujar. The Abujar Gold Project is comprised of three tenements: Zoukougbeu (Abujar Middle tenement), Issia (Abujar South tenement) and the Zahibo (Abujar North tenement). The Gludehi deposit is the first deposit/prospect discovered by the Company within the Abujar Project.

Other deposits/prospects discovered within the Abujar Project include Pischon Deposit, Golikro Prospect, Zoukpangbeu, Koflankro, Vingt Duex etc. (see Figure 2). With the likelihood of more gold prospects to be discovered and more gold deposits to be defined within the Abujar Gold Project, the Company has decided to use the name Gludehi for the first gold deposit within the Abujar Gold Project.

The Company has initiated an aggressive IP survey program to be executed by a team led by acclaimed geologist and Tietto investor Dr Minlu Fu. This will assist the Company by accelerating gold prospect definition and the detection of deep gold targets within the extensive 70km gold mineralised geological structure that runs through the three tenements of the Abujar Gold Project.

Web: www.tietto.com

For further information, visit www.tietto.com or contact:

Dr Caigen WangManaging Director

Tel: +61 8 9486 4036

Competent Persons' Statements

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Mark Strizek, a Competent Person who is a Member or The Australasian Institute of Mining and Metallurgy. Mr Strizek is a non-executive director of the Company. Mr Strizek has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Strizek consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Resources was first published by RPM Global in the Company's Replacement Prospectus dated 16 November 2017 released on the ASX platform on 16 January 2018. The Company confirms that it is not aware of any new information or data that materially affects the relating to Minerals Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates in continue to apply and have not materially changed. The Company confirms that the form and context in which the RPM Global's findings are presented have not been materially modified.

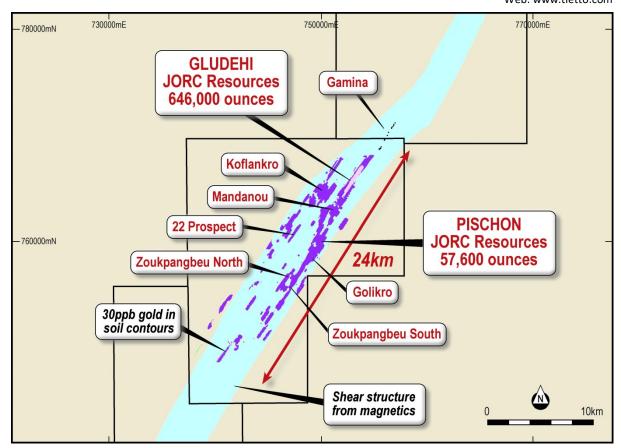


Figure 2: Locations of Gludehi Deposit, Pischon Deposit and other prospects within the Abujar Middle tenement

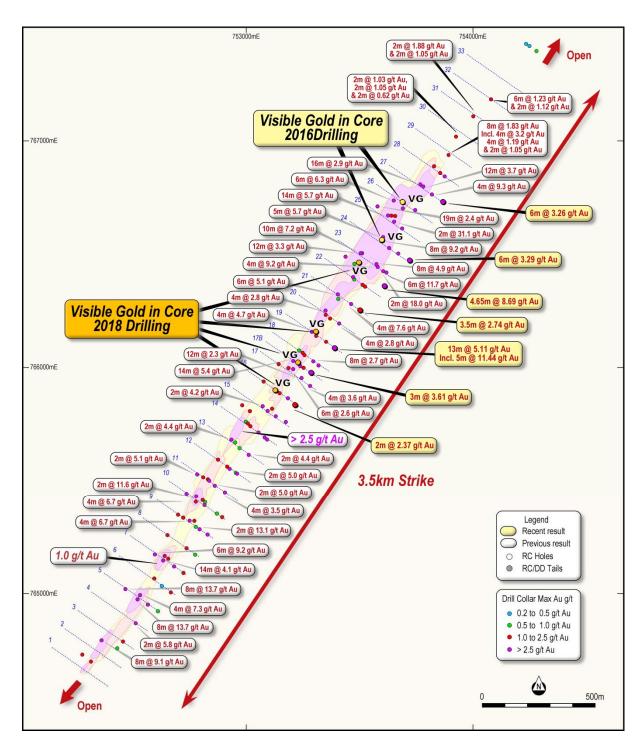


Figure 3: Plan showing latest drilling intercepts from drilling at the Gludehi Deposit located within the Abujar Middle tenement

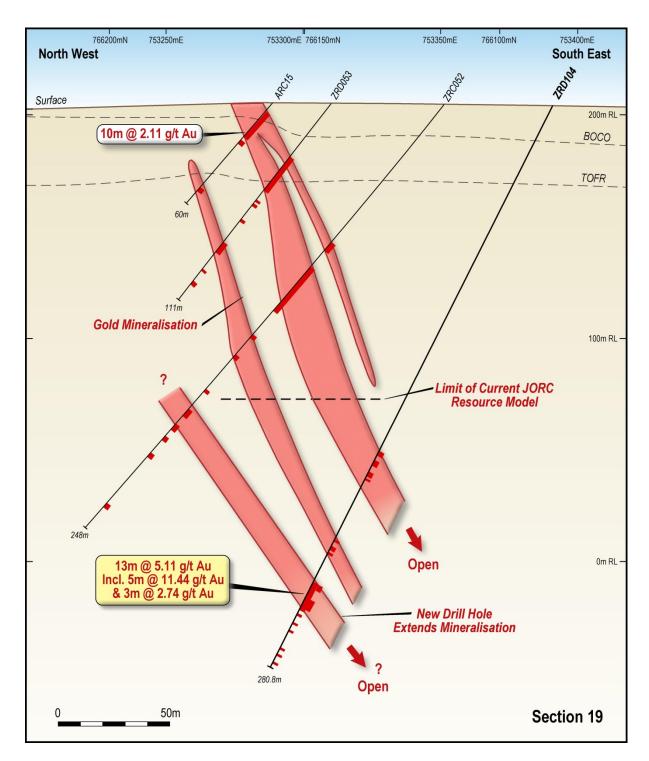


Figure 4: Cross Section showing latest drill intercepts on Section 19 at the Gludehi Deposit within the Abujar Middle tenement

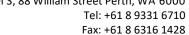
Figure 5: Example of DD core with visible gold

Table 2: Information about the Gludehi depth extension holes drilled in 2018

PROSPECT	HOLE ID	EASTING	NORTHING	RL	DIP	AZIMUTH	HOLE LENGTH	HOLE TYPE	RC Depth from 0 to (m)	DD Depth to (m)
Gludehi	ZRD112	753865	766734	218	-60	305	275.9	RCⅅ	134	275.9
Gludehi	ZRD104	753390	766085	228	-60	305	280.8	RCⅅ	92.7	280.8
Gludehi	ZRD103	753286	765975	243	-65	304	221.96	RCⅅ	92.8	221.96
Gludehi	ZRD113A	753723	766471	220	-65	315	350.13	RCⅅ	122	350.13
Gludehi	ZRD114	753612	766358	230	-60	310	291.3	RCⅅ	248.8	291.3
Gludehi	ZRD115	753502	766253	234	-60	304	275.72	RCⅅ	139.5	275.72
Gludehi	ZRD116	753213	765836	234	-60	305	264.05	RCⅅ	162	264.05

Table 3: All assay results ≥0.10g/t Au from DD core for Gludehi depth extension drilling in 2018

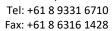
	I _					I _	_		
Hole_ID	From	То		Gold (g/t)	Hole_ID	From	То		Gold (g/t)
ZRD103	141	142	1	0.21	ZRD104	177	178	1	0.3
ZRD103	147	148	1	0.33	ZRD104	178	179	1	0.33
ZRD103	148	149	1	0.2	ZRD104	179	180	1	0.68
ZRD103	149	150	1	0.22	ZRD104	182.84	184.02	1.18	0.39
ZRD103	150	151	1	0.03	ZRD104	184.02	185	0.98	0.93
ZRD103	151	152	1	0.17	ZRD104	186	187.02	1.02	1.46
ZRD103	156	157	1	4	ZRD104	187.02	188	0.98	0.16
ZRD103	158	159	1	6.8	ZRD104	189	190	1	0.18
ZRD103	162	163	1	0.44	ZRD104	190	191	1	0.12
ZRD103	163	164	1	0.58	ZRD104	192	193.05	1.05	0.17
ZRD103	164	165	1	0.38	ZRD104	193.05	194	0.97	0.17
ZRD103	165	166	1	0.32	ZRD104	199.03	200	0.97	0.14
ZRD103	166	167	1	0.1	ZRD104	201	202	1	0.18
ZRD103	167	168	1	0.64	ZRD104	217	218	1	0.27
ZRD103	168	169	1	0.13	ZRD104	218	219	1	0.18
ZRD103	169	170	1	0.13	ZRD104	220	221	1	0.25
ZRD103	170	171	1	0.11	ZRD104	221	222	1	0.31
ZRD103	171	172	1	8.09	ZRD104	223	224	1	0.37
ZRD103	177	178	1	0.27	ZRD104	229	230	1	0.19
ZRD103	178	179	1	0.24	ZRD104	238	239.03	1.03	3.29
ZRD103	180	181	1	0.59	ZRD104	239.03	240.03	1	0.18
ZRD103	182	183	1	0.11	ZRD104	240.03	241	0.97	4.81
ZRD103	191	192	1	0.16	ZRD104	242	243	1	0.24
ZRD103	200	201	1	0.12	ZRD104	243	244	1	0.11
ZRD103	201	202	1	0.1	ZRD104	244	245	1	0.12
ZRD103	202	203	1	0.12	ZRD104	245	246	1	0.42
ZRD103	203	204	1	0.17	ZRD104	246	247	1	46.98
ZRD103	204	205	1	0.12	ZRD104	247	248	1	4.70
ZRD103	212.85	214	1.15	0.16	ZRD104	248	249	1	0.75
ZRD103	216	217	1	0.74	ZRD104	249	250	1	0.49
ZRD103	217	218	1	0.19	ZRD104	250	251	1	4.29
ZRD103	219	220	1	0.21	ZRD104	251	252.3	1.3	0.35
ZRD104	121.64	122.86	1.22	0.13	ZRD104	252.3	253	0.7	0.19
ZRD104	122.86	123.54	0.68	0.16	ZRD104	254	255	1	0.24
ZRD104	171	172	1	0.13	ZRD104	255	256	1	0.18
ZRD104	172	173	1	0.74	ZRD104	256	257	1	0.03
ZRD104	173	174	1	0.79	ZRD104	257	258	1	0.17
ZRD104	174	175.04	1.04	0.21	ZRD104	258	259.4	1.4	0.89
ZRD104	175.04	176	0.96	0.06	ZRD104	260.54	262	1.46	0.1
ZRD104	176	177	1	0.14	ZRD104	262	263	1	0.46


Hole_ID	From	То	Interval	Gold (g/t)	Hole_ID	From	То	Interval	Gold (g/t)
ZRD104	265	266	1	0.16	ZRD112	228	229	1	0.29
ZRD104	271	272	1	0.27	ZRD112	231	232	1	0.34
ZRD114	266	267.35	1.35	0.67	ZRD112	232	233	1	2.45
ZRD104	274	275	1	3.05	ZRD112	233	234	1	1.03
ZRD104	278	279	1	0.35	ZRD112	234	235	1	0.76
ZRD112	168	169	1	0.16	ZRD112	235	236	1	1.03
ZRD112	170	171	1	0.29	ZRD112	236	237	1	0.29
ZRD112	171	172	1	0.47	ZRD112	237	238	1	0.45
ZRD112	172	173	1	0.12	ZRD112	238	239	1	1.27
ZRD112	173	174	1	0.21	ZRD112	239	240.5	1.5	0.31
ZRD112	176	177	1	0.98	ZRD112	240.5	242	1.5	0.5
ZRD112	177	178	1	0.29	ZRD112	243	244	1	0.12
ZRD112	179	180	1	0.99	ZRD112	244	245.5	1.5	7.03
ZRD112	188	189	1	0.15	ZRD112	245.5	247	1.5	0.36
ZRD112	189	190	1	0.44	ZRD112	247	248	1	0.11
ZRD112	190	191	1	0.24	ZRD112	248.5	250	1.5	0.14
ZRD112	191	192	1	0.33	ZRD112	250	251.5	1.5	0.22
ZRD112	192	193	1	0.1	ZRD112	251.5	253	1.5	0.11
ZRD112	193	194	1	0.97	ZRD112	257	258	1	0.31
ZRD112	194	195	1	0.12	ZRD112	258	259	1	0.25
ZRD112	197	198	1	0.14	ZRD112	259	260	1	0.04
ZRD112	199.72	201	1.28	0.14	ZRD113A	122	123	1	0.79
ZRD112	204.18	205	0.82	0.13	ZRD115	139.5	141	1.5	1.53
ZRD112	205	206	1	0.65	ZRD115	141	142	1	0.38
ZRD112	206	207	1	0.13	ZRD115	142	143	1	0.17
ZRD112	207	208.5	1.5	0.19	ZRD113A	161	162	1	0.19
ZRD112	208.5	210	1.5	0.1	ZRD113A	183	184	1	0.1
ZRD112	210	211	1	0.13	ZRD113A	194	195	1	0.1
ZRD112	213	214	1	0.42	ZRD113A	196	197	1	0.16
ZRD112	214	215	1	0.38	ZRD113A	199	200	1	0.16
ZRD112	215	216	1	0.54	ZRD113A	202	203.37	1.37	0.13
ZRD112	216	217.5	1.5	2.06	ZRD113A	203.37	204	0.63	0.1
ZRD112	219	220	1	0.15	ZRD113A	205	206	1	0.11
ZRD112	220	221	1	0.23	ZRD113A	206	206.9	0.9	0.1
ZRD112	221	221.9	0.9	1.44	ZRD113A		208	1.1	0.22
ZRD112	221.9	223	1.1	3.29	ZRD113A		209	1	0.1
ZRD112	223	224.5	1.5	0.37	ZRD115	152	153	1	0.04
ZRD112	224.5	225.5	1	0.15	ZRD113A		211	0.67	0.11
ZRD112	225.5	227	1.5	9.3	ZRD113A	211	212	1	0.1
ZRD112	227	228	1	0.22	ZRD113A	212	213	1	0.16

Hole ID	From	То	Interval	Gold (g/t)	Hole ID	From	То	Interval	Gold (g/t)
ZRD113A	213	214.5	1.5	0.69	ZRD113A	282	283	1	0.18
ZRD113A	216	217	1	0.57	ZRD113A	284	285	1	0.13
ZRD113A	217	218	1	0.52	ZRD113A	285	286	1	0.2
ZRD113A	219	220	1	0.46	ZRD113A	286	287	1	0.23
ZRD113A	220	221	1	0.26	ZRD113A	287	288	1	0.22
ZRD113A	226	227.5	1.5	0.13	ZRD113A	288	289	1	5.29
ZRD113A	234	235	1	0.15	ZRD113A	289	290	1	0.41
ZRD113A	235	236	1	0.1	ZRD113A	290	291	1	0.3
ZRD113A	237	238	1	2.11	ZRD113A	291	292	1	0.34
ZRD113A	238	239	1	0.33	ZRD113A	292	293	1	0.13
ZRD113A	241	242	1	0.11	ZRD113A	296	297	1	0.25
ZRD113A	246	247	1	0.4	ZRD113A	297	298	1	0.11
ZRD115	157	158	1	0.22	ZRD113A	302	303	1	0.78
ZRD113A	247	248	1	0.12	ZRD113A	303	304	1	0.21
ZRD113A	248	249	1	0.1	ZRD113A	304	305	1	0.42
ZRD113A	250.5	252	1.5	0.32	ZRD113A	305	306	1	0.2
ZRD113A	252	253	1	0.14	ZRD113A	311	312	1	0.18
ZRD113A	253	254	1	0.11	ZRD113A	312	313	1	0.11
ZRD113A	254	255	1	0.82	ZRD113A	327	328	1	0.16
ZRD113A	255	256	1	0.77	ZRD114	261	262	1	0.14
ZRD113A	256	257	1	0.26	ZRD114	262	263	1	0.21
ZRD113A	257	258	1	0.81	ZRD114	263	264	1	0.11
ZRD113A	258	259	1	0.13	ZRD114	264	265	1	0.1
ZRD113A	259	260.23	1.23	5.04	ZRD114	266	267.35	1.35	0.57
ZRD113A	260.23	261	0.77	0.11	ZRD114	267.35	268	0.65	2.17
ZRD113A	261	262	1	0.12	ZRD114	268	269	1	3.68
ZRD113A	262	263.26	1.26	0.44	ZRD114	269	269.63	0.63	50.85
ZRD113A	263.26	264	0.74	0.14	ZRD114	269.63	271	1.37	1.18
ZRD113A	264	265	1	1.14	ZRD114	271	272	1	1.67
ZRD115	160	161	1	0.53	ZRD114	274.09	275	0.91	0.48
ZRD113A	265	266	1	0.33	ZRD114	281	282	1	0.45
ZRD113A	266	267	1	0.16	ZRD115	163	164.5	1.5	0.13
ZRD113A	268	269	1	0.14	ZRD115	164.5	166	1.5	0.1
ZRD113A	269	270	1	0.49	ZRD115	168	169	1	0.38
ZRD113A	274	275	1	7.75	ZRD115	174	175	1	0.12
ZRD113A	275	276	1	1.65	ZRD115	179	180	1	1.33
ZRD113A	276	277	1	3.19	ZRD115	180	181	1	0.13
ZRD113A	277	278	1	2.41	ZRD115	183	184.5	1.5	0.37
ZRD113A	278	279	1	1.18	ZRD115	184.5	186	1.5	0.15
ZRD113A	279	280	1	3.56	ZRD115	188	189	1	0.7

Hole ID	From	То	Interval	Gold (g/t)	Hole ID	From	То	Interval	Gold (g/t)
ZRD115	196	197	1	0.34	ZRD116	184	185	1	0.11
ZRD115	197	198	1	0.27	ZRD116	185	186	1	0.55
ZRD115	198	199	1	0.31	ZRD116	187	188	1	0.29
ZRD115	199	200	1	0.12	ZRD116	199	200	1	0.11
ZRD115	218	219	1	3.19	ZRD116	203	204.5	1.5	0.38
ZRD115	219	220	1	0.1	ZRD116	204.5	206	1.5	0.2
ZRD115	231	232	1	0.1	ZRD116	209.18	210	0.82	0.17
ZRD115	236	237	1	0.22	ZRD116	211.3	212	0.7	0.15
ZRD115	237	238	1	0.12	ZRD116	212	213	1	0.49
ZRD115	245.21	246	0.79	0.87	ZRD116	220	221.67	1.67	0.53
ZRD115	246	247	1	3.88	ZRD116	221.67	223	1.33	0.42
ZRD115	247	248	1	2.78	ZRD116	223	224	1	1.49
ZRD115	248	249.5	1.5	1.95	ZRD116	224	225	1	0.05
ZRD115	249.5	250	0.5	0.43	ZRD116	227	228	1	0.27
ZRD115	250	251	1	0.55	ZRD116	228	229	1	0.18
ZRD115	251	252	1	1.26	ZRD116	232	233	1	0.48
ZRD115	252	253	1	0.17	ZRD116	233	234	1	0.32
ZRD115	253	254	1	0.15	ZRD116	236	237.11	1.11	0.62
ZRD115	261	262	1	4.03	ZRD116	237.11	238	0.89	0.26
ZRD115	266	267	1	0.21	ZRD116	238	238.5	0.5	0.88
ZRD116	162	163	1	0.16	ZRD116	238.5	240	1.5	0.72
ZRD116	163	164	1	0.35	ZRD116	241	242	1	0.51
ZRD116	164	165	1	0.14	ZRD116	242	243	1	0.2
ZRD116	166	167	1	0.16	ZRD116	243	244.2	1.2	0.1
ZRD116	168	169	1	0.26	ZRD116	244.2	245	0.8	1.42
ZRD116	170	171	1	0.25	ZRD116	245	246.5	1.5	1.17
ZRD116	172	173	1	1.02	ZRD116	246.5	248	1.5	0.22
ZRD116	177	178	1	0.13	ZRD116	249	250	1	0.12
ZRD116	179	180	1	1.05	ZRD116	250	251	1	4.32
ZRD116	180	181	1	3.69	ZRD116	251	252	1	0.1
ZRD116	181	182	1	0.36					

Web: www.tietto.com


JORC Code, 2012 Edition – Table 1, Section 1-2

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	• The Abujar 2018 drilling has been carried out with a multiple purpose drill rig using Reverse Circulation (RC) techniques for collar of each hole and Diamond Drilling (DD) techniques for the tail of some deep hole. In general, the RC to DD switch point is at around 120-150m hole depth. Holes are angled to optimally intersect mineralised zones. All RC and DD samples were weighed to determine recoveries. All potentially mineralised zones were then split and sampled at 1m intervals using three-tier riffle splitters. DD core were cut at the camp site of the Abujar project. QA/QC procedures were completed as per industry best practice standards (certified blanks and standards and duplicate sampling). In general, 2m RC composite samples and 0.5-1.67m DD half core were despatched to ALS Lab in Yamoussoukro for sample preparation, where they were crushed, dried and pulverised to produce a subpulps for fire assay. The pulps were then sent to ALS's assay Lab in Ouagadougou (Burkina Faso) or Kumasi (Ghana) where 50g fire assays, AAS finishes and screen fire assays have been conducted. Following a review of results for intervals where visible gold had been observed in drill core. Pulps from ZRD103, ZRD104, ZRD113A, ZRD114, ZRD115 and ZRD116 (total 30 samples) that had been prepared at ALS Yamoussoukro Lab were sent to

Tel: +61 8 9331 6710 Fax: +61 8 6316 1428

000	· -	Web: www.tietto.com
		Intertek Ghana for check assaying which involved a re-assay of three times on each pulp. Following a review and check of QA/QC standards the company has determined that in the presence of coarse gold it is correct to use the average of the three Intertek assay results for these 30 samples which are reported here.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse Circulation "RC" drilling within the exploration area comprises 5 1/8 inch diameter face sampling hammer. Diamond drilling within the exploration area comprises NQ sized core. The RC to DD switch point is at around 120-150m hole depth.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core was reconstructed into continuous runs for orientation; marking depths were checked against the depths marked on core blocks. RC recoveries are logged and recorded in the database. Overall recoveries are >75% for the RC; there are no significant sample recovery problems. A technician is always present at the rig to monitor and record recovery. A cyclone and splitter were used to provide a uniform sample and were routinely cleaned. Tietto employees managed sampling to ensure correct sampling practices. RC samples were visually checked for recovery, moisture and contamination. A booster was used when drilling wet holes, to maintain dry samples each wet hole was purged after a rod change and before the commencement of drilling the next rod. Core recoveries were generally good with 90% average

Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	recovery. As the mineralised zone is generally silicified and competent, core loss was not observed to be an issue over the mineralised zones. No significant bias is expected and any potential bias is not considered material. • Tietto uses specifically designed log sheets to capture all geological data. During logging, part of the RC sample is washed, logged and placed (using glue) to chip boards meter by meter, which are stored on site. Geotechnical logging was carried out on all diamond drill holes for recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure/Geotech table of the database. Logging of diamond core and RC samples recorded lithology, mineralogy, mineralisation, structural (DDH only), weathering, alteration, colour and other features of the samples. Core was photographed in both dry and wet form. All drilling has been logged to a standard that is appropriate for inclusion in any future Mineral Resource estimation or mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- 	 Diamond core sampling intervals were based on lithological or alteration boundary contacts, with a minimum down hole length of 0.5 and maximum of 1.67m. The core was photographed, structurally logged, cut and half core was sent for assay. Sampling of RC holes was completed on 1-metre downhole intervals, but 2-metre composite samples were created and assayed; bulk samples were taken from the cyclone meter by meter by Tietto field

Tel: +61 8 9331 6710 Fax: +61 8 6316 1428

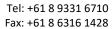
Web: www.tietto.com

M	TIETTO
W	TIETTO MINERALS

sampling stages to maximise representivity of samples.

- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

assistants and split through a three-tier Jones riffle splitter to collect 2 6.5kg samples. Every attempt was made to ensure that the splitter that was used was in good condition, level and that the splitter was cleaned with compressed air after each sample was passed through it to minimise contamination. Every effort was made to ensure that samples were sampled dry. Field QAQC procedures included the insertion of field duplicates and commercial standards. Field duplicates were inserted at 15m intervals or where mineralisation was anticipated and Standards were inserted at 30m intervals (every 15 RC samples for 2 meter composite RC samples). Approximately 1:15 RC field duplicates were taken from 1m riffle split samples at the rig. Sample sizes are considered to be appropriate to accurately represent the gold mineralisation at Abujar based on the intersections, the sampling methodologies, observed gold particle size and assay values.

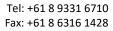

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

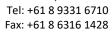
 Assaying was completed at ALS laboratories either in Ouagadougou or Kumasi depending on LAS lab's working loads using 50g fire assay and an atomic absorption spectrometer (AAS) finish which is considered a near total assaying technique if completed properly. This method is appropriate and returns accurate and precise values for gold. Field QAQC procedures included the insertion of field duplicates and commercial standards. The laboratory inserted feldspar flushes, standards, repeats and duplicates. Repeat or duplicate analysis for samples (assayed in the past three years) showed that the precision of samples is within

Tel: +61 8 9331 6710 Fax: +61 8 6316 1428

		Web. www.tietto.com
		acceptable limits. However, pulps from DD core samples with visible gold were re-assayed in Intertek Ghana with three repeats and the average results for these samples were reported.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Several independent personnel visually verified intersections in diamond core and RC chips as well as trenches and outcrops. Primary data was collected using a set of company standard Excel templates on Toughbook laptop computers using lookup codes. The geo-information was validated on-site by the Company's database technicians and then validated and merged into a final database by the company's database manager.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations as reported have been picked-up using a Garmin GPS. Final locations will come from a pickup by a surveyor using a total station. Downhole surveying was completed by the drilling contractor using a Reflex EZ-shot Downhole Survey instrument. All drill holes have been located using UTM grid WGS84 Z31N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The DD holes being reported are spaced on sections of between 100m and 300m. Further drilling will be required and is planned to bring the section spacing to a uniform 100m. This drilling will be incorporated into a future update of the current 2012 JORC classified Mineral Resource. Mineralised intervals are reported as a weighted average across zones of mineralisation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the 	 Drill sections are approximately orientated West to East with respect to grid North. This orientation allows for the delineation of North-South structures



	 deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	internal to the shear zone as well as the overall NS trend. Holes are drilled at -65° to -50°
Sample security	The measures taken to ensure sample security.	 Chain of custody is managed by Tietto until the samples were despatched to ALS Lab in Yamoussoukro. Samples are stored on site and delivered by Tietto personnel to ALS Lab in Yamoussoukro for sample preparation. Whilst in storage, they remain under guard in a locked yard. Tracking sheets are used to track the progress of batches of samples.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Tietto personnel and consultants working on the Abujar project site conducted data reviews as their routine work. No material issues have been noted.



Section 2: Reporting of Exploration Results			
Criteria	JORC Code explanation	Commentary	
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Abujar Project hosts three exploration licences, the Abujar South Exploration License ("Issia Licence", 390.5 km², to which Tietto holds a 100% interest), the Abujar Middle Exploration License ("Zoukougbeu Licence", 383.5 km², to which Tietto holds a 50% interest through the licence holding company B&F Minerals Sarl, with the right to acquire a further 40% interest) and the Abujar North Exploration License ("Zahibo Licence", 340 km², to which Tietto holds a 15% interest through the licence holding company Gail Exploration Sarl, with the right to acquire a further 65% interest), which together, cover an area of 1,114 km². The Issia Licence was granted on 22 March 2017. The Zoukougbeu Licence was granted on 15 September 2014. The Zahibo Licence was granted on 6 May 2015 All exploration licences have an initial tenure of 4 years with two entitled extension of 3 years each plus a special extension of 2 years, for a total of up to 12 year tenure. All licences are granted for gold. All fees have been paid, and the permits are valid. The ownership of mineral lease rights in Côte d'Ivoire is governed primarily by the Law n°2014-138 dated on March 24 2014 (Côte d'Ivoire Mining Code). If the exploration licences were to be subsequently converted into Mining Licences, the Government of Cote d'Ivoire would hold a 10% share of the permit and Tietto would hold 90%, 85% and 80% for the Abujar South, Abujar Middle and Abujar North, respectively. 	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There were no historical exploration activities on any of the three licences comprising the Abujar project. Tietto started systematic exploration as soon as the licences 	

000	TERAL O	Web: www.tietto.com
		were granted on each of the three licenced areas.
Geology	Deposit type, geological setting and style of mineralisation.	 The Abujar Project is located within the Proterozoic Birimian rocks of the Man shield, as situated on the Daloa 1:200,000 geologic sheet, 30km west of city of Daloa, It is located in the Hana-Lobo belt, east of the Sassandra fault that marks the boundary between the Man shield (Archean) and Eburnean domain. The regional trend is north-northeast to northeast. Formations which have been structured by the Eburnean cycle are Birimian. 17 volcano sedimentary belts have been recorded in this domain, and reported to hold 95% of the gold mineralisation in the country. Within the Project, outcrops are very uncommon, only laterite cover is mainly spread with hardpans and duricrust spots occurring. The Abujar Deposit is located in NNE SSW orientated body of granitoid migmatite and is hosted within in an interpreted regional shear structure. This is enclosed in two mica granite bodies of similar interpreted orientation which are regionally referred to as granodiorites.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this 	The drill hole information is presented in the Table 1 and Table 2 above.

000 mintercals		Web: www.tietto.com	
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	The visible gold reported in this announcement is based purely on the Company's technical personnel's visual observation of the DD core. DD core.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill hole angles of ~60 on varying azimuths are adequate for the mineralisation intercepted. All exploration drilling results to date have been reported as down hole lengths. 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in text	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration 	All grades, high and low, are reported accurately with "from" and "to" depths and "hole identification" shown.	

M	1	TIETTO
M	1	TIETTO MINERALS

	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The project delivered in late 2016 a JORC 2012 Inferred resource of 10.42mt at 2.1g/t containing 703,600oz gold. Preliminary metallurgical study was also carried out at ALS Perth in 2015. Details about the above report are available within the Company. No work has been carried out on geotechnical, hydrogeological or environmental issues etc.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further infill and extensional drilling is planned and is in the process of being executed. Extensive geophysical study of the project area is planned to be carried out in the 2nd quarter of 2018.