

WIDE, HIGH GRADE GOLD CONFIRMED AT SEKO ANOMALY SK2

SUMMARY

- ► Further assay results received from Oklo's 2018 Phase 2 shallow aircore (AC), and deeper reverse circulation (RC) and diamond drilling (DD) program at Seko.
- Ongoing drilling has returned significant intersections from a further 7 RC and 3 DD drill holes, testing for extensions beneath the broad, shallow zone of oxide gold mineralisation at Seko Anomaly SK2, these include:
 - ► 62m at 5.26g/t gold from 3m; including
 - 30m at 7.09g/t gold from 26m, and
 - 10m at 12.17g/t gold from 44m
 - ► **31m at 6.27g/t gold** from 101m; including
 - 8m at 17.20g/t gold from 102m
 - ▶ 46m at 4.03g/t gold from 111m; including
 - 20m at 6.41g/t gold from 132m, and
 - 5m at 11.86g/t gold from 147m
- Results have confirmed a continuous, steep easterly-dipping, high grade gold-mineralised shoot at SK2 over a strike length of 80m, extending from surface to a vertical depth of 195m which remains open at depth. The shoot is coincident with the previously reported AC results, which outlined shallow oxide mineralisation over a strike length of approximately 400m.
- Ongoing structural logging of drill core continues to assist in targeting extensions to the high grade gold mineralisation and exploring for potential repetitions.
- ► The Phase 2 program is well advanced with **50,000m of drilling** planned for completion prior to the onset of the wet season in July at an estimated cost of \$5 million, fully funded from Oklo's cash reserves.
- ► A total of 107 AC holes (for 10,837m), 33 RC holes (for 6,095m) and 21 DD holes (for 5,291m) completed to date in the Phase 2 program, with drilling continuing and results pending from a further 107 AC, 19 RC and 9 DD holes.

Oklo Resources Limited ("Oklo" or "the Company"; ASX:OKU) is pleased to announce the following progress report on its 2018 Phase 2 drilling program at the Seko prospect within the Dandoko Project (Figure 1a and 1b).

Oklo's Dandoko Project and adjoining Moussala, Kouroufing and Kandiole Projects are located within the Kenieba Inlier of western Mali and lie 30km to the east of B2Gold's 5.15Moz Fekola mine and 50km to the south-southeast of Randgold's 12.5Moz Loulo mine.

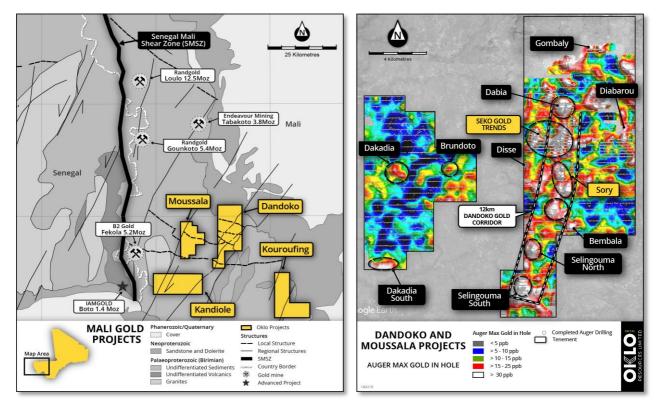


Figure 1: a) Location of Oklo's Dandoko, Moussala, Kouroufing and Kandiole gold projects in west Mali b) Location of Seko trends within 12 km long Dandoko gold corridor

PHASE 2 DRILLING PROGRAM

The current multifaceted drilling programs have been designed to test for both strike and depth extensions to the previously encountered oxide gold mineralisation through AC drilling to a vertical depth of circa 80m and deeper RC and DD drilling to vertical depths of between 180-200m at Seko Anomaly 2 (SK2) and Seko Anomaly 3 (SK3), as well as testing other regional targets along the Dandoko gold corridor and within the Kouroufing Project.

The 2018 Phase 2 program is targeting the completion of 50,000m of drilling prior to the onset of the wet season in July and includes auger, aircore (AC), reverse circulation (RC) and diamond drilling (DD) at an estimated cost of \$5 million.

SEKO AC, RC AND DD DRILLING PROGRAM

To date, a total of 33 RC holes (for 6,095m) and 21 DD holes (for 2,116.7m RC pre-collar and 3,192m DD) have been completed as part of the Phase 2 program at Seko and 107 AC holes (for 10,837m) at Dabia.

This announcement summarises assay results received from a further 7 RC and 3 DD holes drilled at SK2, with assay results pending from another 19 RC and 9 DD holes at Seko.

The Seko auger gold anomalies comprise 5 coherent gold trends with a combined strike length of 7km. The SK2 anomaly extends over 1.0km, with widespread bedrock gold mineralisation intersected from previous shallow AC and limited RC and DD drilling (Figures 2 and 3).

Recent deeper RC and DD drilling has focused on the central portion of SK2, testing for depth extensions to the high grade oxide and primary gold mineralisation previously reported from holes ACSK17-309 and RCSK18-036¹. The new holes were designed to improve the geological understanding of the high grade gold mineralisation through the re-drilling and deepening of these earlier holes that were terminated prematurely in mineralisation.

RC HOLE RCSK18-043

RC hole RCSK18-043 was drilled 5m to the east of hole ACSK17-309, which intersected **42m at 6.14g/t gold** from surface and was terminated in mineralisation at 42m. The new twin hole was drilled to a total depth of 144m and successfully extended the oxide mineralised zone by 20m to **62m at 5.26 g/t gold** from 3m, including **30m at 7.09g/t gold** from 26m which includes **10m at 12.17g/t gold** from 44m (Figure 4).

Significantly, this hole encountered a second mineralised zone from a down hole depth of 101m, returning **31m at 6.27g/t gold** including **8m at 17.20g/t gold**. This new deeper primary mineralised zone indicates potential for further high grade shoots within the SK2 mineralised envelope and is currently the focus of further drilling (Figure 4).

DD HOLE RDSK18-020

DD hole RDSK18-020 was drilled 5m to the east of hole RCSK18-036, which intersected **18m at 4.41g/t gold** from 128m, including **5m at 9.67g/t gold** and was abandoned at 146m. The new twin hole was drilled to a total depth of 228.3m and successfully extended the mineralised zone by 27m to **46m at 4.03g/t gold** from 110m, including **20m at 6.41g/t gold** from 132m and **5m at 11.86g/t gold** from 147m (Figure 4).

Further holes drilled on sections 80m to 160m to the south of RCSK18-043 and RDSK18-020 intersected further shallow zones of oxide mineralisation including 8m at 3.34g/t gold from 6m in hole RCSK18-042 and 6m at 1.27g/t gold from 38m in hole RCSK18-044. Additionally, wide zones of low grade mineralisation were returned, including 107m at 0.26g/t gold from 17m in hole RCSK18-041, and 34m at 0.63g/t gold from 125m including 3m at 3.42g/t gold from 131m in hole RCSK18-038. These broad zones of low grade mineralisation further confirms the presence of a potentially large mineralising system at Seko, which will be further evaluated as part of the ongoing drilling targeting repetitions to the high grade shoots.

The diamond drilling continues to gather important structural information, assisting in the design of future holes. Based on drilling completed to date at SK2, the oxide mineralisation extends over 400m and overlies a steep easterly-dipping, high grade shoot in the primary zone with a strong southerly plunge component.

¹ Refer ASX announcements 28th November 2017 and 8th March 2018

The gold mineralisation at SK2 currently remains open in all directions to a vertical depth of 195m and, like SK3 to the west, is associated with a broad albite-carbonate-pyrite alteration zone and a turbiditic unit within a carbonate and greywacke sequence.

The Company is highly encouraged by the wide, high grade nature of the gold mineralisation within the primary zone at SK2 and is optimistic for the discovery of further high grade zones below the extensive Seko anomalies and elsewhere along the 12km long Dandoko gold corridor.

Significant drill hole intersections are summarised in Table 1 with a detailed summary of all assay results $\geq 0.1g/t$ gold presented in Table 3. All drill hole locations are summarised in Table 2 and are graphically represented in Figures 2 to 4. A plan of all significant AC, RC and DD intersections received to date from SK1, SK2 and SK3 is presented in Figure 2.

The Phase 2 drilling program is now well advanced comprising:

- Seko oxide resource definition drilling, including DD for density and metallurgical testwork;
- Seko primary zone exploration drilling;
- Drill testing of other gold anomalies within the Dandoko gold corridor; and
- Auger geochemistry over regional targets in West Mali commencing this week.

DANDOKO GOLD CORRIDOR DRILLING PROGRAM

First pass AC drilling has continued on other targets within the Dandoko gold corridor, with 107 AC holes (for 10,837m) now completed at the Dabia prospect, located some 2.5km north of Seko (Figure 1b). Assay results from the 107 holes designed to follow-up the previous significant drilling results (as disclosed in the Company's ASX release of 3 May 2018) remain pending with samples being held to allow priority analysis of the samples from the Seko drilling.

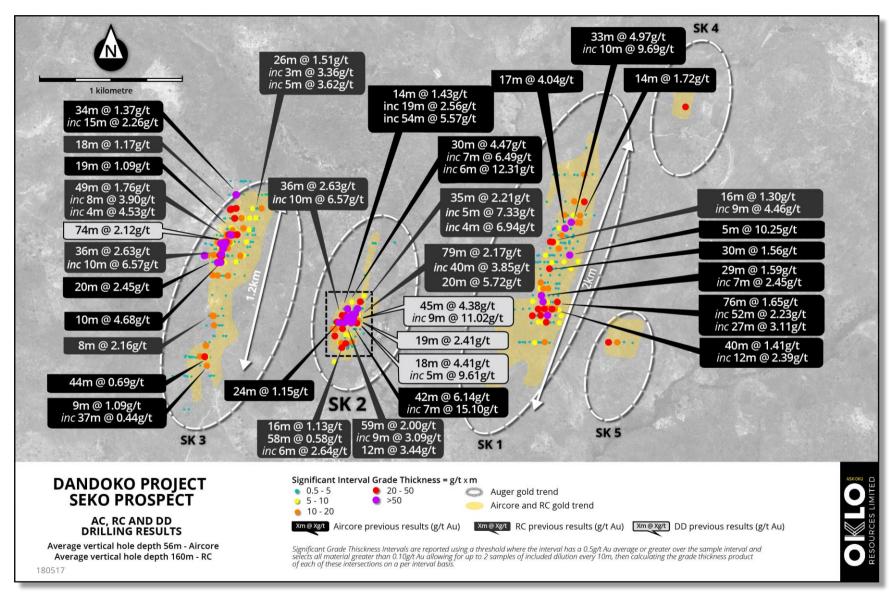
– ENDS –

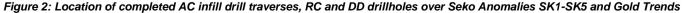
For further information, please contact:

Simon Taylor Managing Director

T: +61 2 8319 9233 E: staylor@okloresources.com Phil Retter Investor Relations - NWR Communications

T: +61 407 440 882 E: phil@nwrcommunications.com.au


ANOMALY	HOLE ID	FROM (m)	TO (m)	WIDTH (m)	GOLD (g/t)
		Diamono			(9/*)
	RDSK18-020	111	157	46	4.03
	including	132	152	20	6.41
	RDSK18-022	188	196	8	1.97
	RDSK18-023	111	112	1	1.98
		RC D	rill Holes	5	
	RCSK18-038	125	159	34	0.63
	including	131	134	3	3.42
	including	153	157	4	1.11
	RCSK18-040	2	3	1	38.30
		3	30	27	0.19 [#]
		103	120	17	0.20 [#]
	RCSK18-041	17	124	107	0.26*
SEKO2	RCSK18-042	6	12	8	3.34
OLINOZ		9	12	3	7.45
		16	36	20	0.34
		110	118	8	1.24
	including	113	114	1	2.70
	including	116	117	1	5.72
	RCSK18-043	3	65	62	5.26*
		10	17	7	3.67
		26	56	30	7.09
		44	54	10	12.17
		78	92	14	0.72
		101	132	31	6.27
	including	102	110	8	17.20
	RCSK18-044	38	44	6	1.27
	Notes: *, applying a 1	128	136	8	0.92


Table 1: Significant RC & DD intersections

Intervals are reported using a threshold where the interval has a 0.5g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.

[#] Intervals are reported using a threshold where the interval has a 0.1g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.

ASX ANNOUNCEMENT

LONG SECTION

FIGURE 4

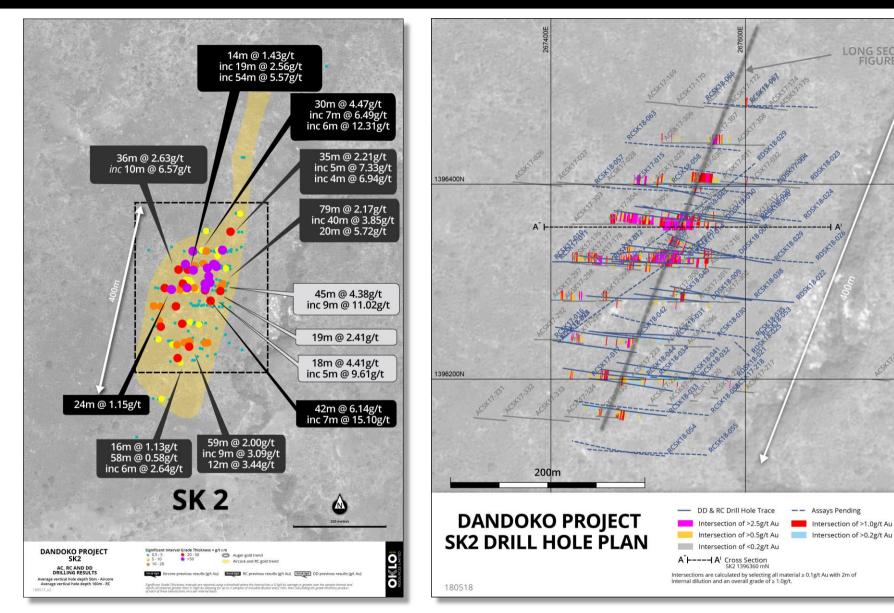


Figure 3:a) Location of completed AC,RC and DD drillholes over SK2 as grams/metres plot and b) Drill hole location plan showing completed AC, RC and DD drillholes over SK2

ASX OKU

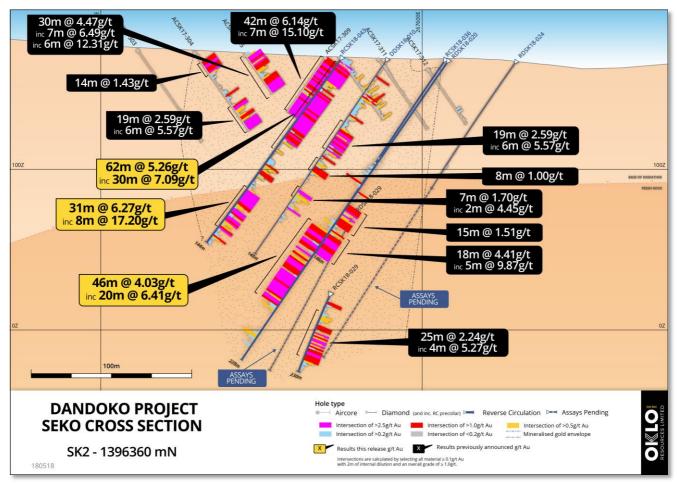


Figure 4: SK2 cross section 1396360mN- A-A'

ANOMALY	HOLE ID	EASTING	NORTHING	RL	LENGTH	AZIMUTH	INCLINATION
· ·			Diamo	ond Drill I	Holes		
'	RDSK18-020	267615	1396363	164	228	270	-55
,	RDSK18-021	267589	1396200	160	222	270	-55
'	RDSK18-022	267650	1396279	160	250	270	-55
'		,,	· ۱		· · · ·	'	-55 assays
'	RDSK18-023	267664	1396401	163	254	270	pending
· ·		Г '	1	ĺ	ſ '	ſ '	-55, assays
1	RDSK18-024	267657	1396362	164	222	270	pending
SEKO2			RC	Drill Hol	les		
· ·	RCSK18-036	267614	1396360	164	146	270	-55
· ·	RCSK18-038	267607	1396281	162	168	270	-55
· ·	RCSK18-040	267530	1396281	164	162	270	-55
· ·	RCSK18-041	267541	1396201	161	156	270	-55
· ·	RCSK18-042	267486	1396242	162	150	270	-55
· ·	RCSK18-043	267549	1396363	166	144	270	-55
· · · · · · · · · · · · · · · · · · ·	RCSK18-044	267496	1396201	162.	150	270	-55

Table 2: DD and RC drill hole locations

ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed exploration company with gold, uranium and phosphate projects located in Mali, Africa.

The Company's focus is its large landholding of eight gold projects covering over 1,500km² in some of Mali's most prospective gold belts. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in discoveries totalling in excess of 30Moz gold.

In late 2016, Oklo initiated a reconnaissance auger geochemistry program over the Dandoko and Moussala Projects to explore for new targets concealed under the extensive tracts of lateritic cover. The program delivered early success with the delineation of the **12km long Dandoko gold corridor**, including the Seko and more recent Sory discoveries (Figure 1b).

Figure 5: Location of Oklo Projects in West and South Mali

Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. This announcement contains information extracted from previous ASX market announcements reported in accordance with the JORC Code (2012) and available for viewing at www.okloresources.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in any original ASX market announcement.

Table 3: All DD assay results ≥0.10g/t Au

	1	1	
HOLE ID	FROM	то	GRADE (g/t)
RDSK18-020	63	64	0.10
RDSK18-020	66	67	0.14
RDSK18-020	68	69	0.11
RDSK18-020	69	70	0.28
RDSK18-020	70	71	0.12
RDSK18-020	71	72	0.28
RDSK18-020	72	73	0.15
RDSK18-020	73	74	0.34
RDSK18-020	79	80	1.4
RDSK18-020	80	81	0.28
RDSK18-020	81	82	0.12
RDSK18-020	103	104	0.28
RDSK18-020	104	105	0.23
RDSK18-020	105	106	0.63
RDSK18-020	106	107	0.24
RDSK18-020	107	108	0.11
RDSK18-020	108	109	0.12
RDSK18-020	109	110	0.12
RDSK18-020	110	111	0.69
RDSK18-020	111	112	1.72
RDSK18-020	112	113	1.08
RDSK18-020	113	114	1.5
RDSK18-020	114	115	7.8
RDSK18-020	115	116	8.9
RDSK18-020	116	117	2.49
RDSK18-020	117	118	1.01
RDSK18-020	118	119	0.44
RDSK18-020	119	120	2.8
RDSK18-020	120	121	6.16
RDSK18-020	121	122	1.52
RDSK18-020	122	123	1.62
RDSK18-020	123	124	0.33
RDSK18-020	125	126	2.81
RDSK18-020	127	128	0.8
RDSK18-020	128	129	1.99
RDSK18-020	129	130	0.15
RDSK18-020	130	131	0.89
RDSK18-020	131	132	1.44
RDSK18-020	132	133	22.2
RDSK18-020	133	134	3.04
RDSK18-020	134	135	7.46
RDSK18-020	135	136	1.89
RDSK18-020	136	137	1.52
RDSK18-020	137	138	2.05
103110-020	121	100	2.05

HOLE IDFROMTO(g/t)RDSK18-0201381390.23RDSK18-0201391403.13RDSK18-0201401413.68RDSK18-0201411425.06RDSK18-0201421432.82RDSK18-0201441445.59RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441445.59RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441445.77RDSK18-0201451462.04RDSK18-0201451462.04RDSK18-02015115212.14RDSK18-02015115212.44RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201711720.33RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-020				GRADE
RDSK18-0201391403.13RDSK18-0201401413.68RDSK18-0201411425.06RDSK18-0201421432.82RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441473.77RDSK18-02014714812.1RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201731740.16RDSK18-0201731740.16RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-020<	HOLE ID	FROM	то	
RDSK18-0201401413.68RDSK18-0201411425.06RDSK18-0201421432.82RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201451462.04RDSK18-0201451462.04RDSK18-0201441473.77RDSK18-02014714812.1RDSK18-0201441492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015015117.8RDSK18-0201531540.7RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551560.33RDSK18-0201751760.33RDSK18-0201741750.33RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-020 <t< td=""><td>RDSK18-020</td><td>138</td><td>139</td><td>0.23</td></t<>	RDSK18-020	138	139	0.23
RDSK18-0201411425.06RDSK18-0201421432.82RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201441454.38RDSK18-0201461473.77RDSK18-0201461473.77RDSK18-02014714812.1RDSK18-02014714812.1RDSK18-02014714812.1RDSK18-02014915014.1RDSK18-02015115212.4RDSK18-0201511522.06RDSK18-0201531540.77RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201741720.13RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.34RDSK18-020<	RDSK18-020	139	140	3.13
RDSK18-0201421432.82RDSK18-0201431445.59RDSK18-0201441454.38RDSK18-0201451462.04RDSK18-0201441473.77RDSK18-0201441473.77RDSK18-0201441492.88RDSK18-0201441492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015015117.8RDSK18-0201521532.06RDSK18-0201531540.77RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201751760.75RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-02122230.24RDSK18-021 <td< td=""><td>RDSK18-020</td><td>140</td><td>141</td><td>3.68</td></td<>	RDSK18-020	140	141	3.68
RDSK18-0201431445.59RDSK18-0201441454.38RDSK18-0201451462.04RDSK18-0201461473.77RDSK18-02014714812.1RDSK18-02014714812.1RDSK18-02014714812.1RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015015117.8RDSK18-0201511522.06RDSK18-0201531540.77RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201751760.75RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-02122230.24RDSK18-0212	RDSK18-020	141	142	5.06
RDSK18-0201441454.38RDSK18-0201451462.04RDSK18-0201461473.77RDSK18-02014714812.1RDSK18-02014714812.1RDSK18-02014915014.1RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551560.33RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0211792000.1RDSK18-0211741550.44RDSK18-0212032040.22RDSK18-02123240.27RDSK18-021	RDSK18-020	142	143	2.82
RDSK18-0201451462.04RDSK18-0201461473.77RDSK18-02014714812.1RDSK18-0201481492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201751760.75RDSK18-0201751760.75RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0211782.98RDSK18-02123240.27RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.25RDSK18-02124	RDSK18-020	143	144	5.59
RDSK18-0201461473.77RDSK18-02014714812.1RDSK18-0201481492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015015212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201781290.44RDSK18-021124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126<	RDSK18-020	144	145	4.38
RDSK18-02014714812.1RDSK18-0201481492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201581590.39RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201781790.14RDSK18-0201791800.11RDSK18-02122230.24RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.25RDSK18-02124	RDSK18-020	145	146	2.04
RDSK18-0201481492.88RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-021124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02124250.26RDSK18-02125260.32RDSK18-021262	RDSK18-020	146	147	3.77
RDSK18-02014915014.1RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201531540.7RDSK18-0201531540.7RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201581590.39RDSK18-0201591600.8RDSK18-0201751760.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0211741550.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-021260.32RDSK18-021260.32<	RDSK18-020	147	148	12.1
RDSK18-02015015117.8RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201551564.28RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-02114150.14RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-02126270.25RDSK18-02128290.12RDSK18-02126270.25RDSK18-0212627 <td>RDSK18-020</td> <td>148</td> <td>149</td> <td>2.88</td>	RDSK18-020	148	149	2.88
RDSK18-02015115212.4RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201751760.75RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-0212627	RDSK18-020	149	150	14.1
RDSK18-0201521532.06RDSK18-0201531540.7RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201571580.44RDSK18-0201591600.88RDSK18-0201591600.88RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-02114150.14RDSK18-02123240.27RDSK18-02123240.27RDSK18-02124250.26RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-02126270.25RDSK18-0212627	RDSK18-020	150	151	17.8
RDSK18-0201531540.7RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201571580.39RDSK18-0201591600.8RDSK18-0201591600.13RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0211240.22RDSK18-02123240.27RDSK18-02124250.26RDSK18-02124250.26RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-02126270.25RDSK18-02126270.25RDSK18-02128290.12RDSK18-02126270.25 <td>RDSK18-020</td> <td>151</td> <td>152</td> <td>12.4</td>	RDSK18-020	151	152	12.4
RDSK18-0201541553.81RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201591590.39RDSK18-0201591600.8RDSK18-0201591600.13RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-02114150.14RDSK18-02123240.27RDSK18-02124250.26RDSK18-02124250.26RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-0212829 <td< td=""><td>RDSK18-020</td><td>152</td><td>153</td><td>2.06</td></td<>	RDSK18-020	152	153	2.06
RDSK18-0201551564.28RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201581590.39RDSK18-0201591600.8RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201711720.13RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201792000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-02114150.14RDSK18-02122230.24RDSK18-02124250.26RDSK18-02124250.26RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-0212829	RDSK18-020	153	154	0.7
RDSK18-0201561571.03RDSK18-0201571580.44RDSK18-0201591600.8RDSK18-0201591600.8RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-02114150.14RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02128290.12RDSK18-0212829RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12 <tr< td=""><td>RDSK18-020</td><td>154</td><td>155</td><td>3.81</td></tr<>	RDSK18-020	154	155	3.81
RDSK18-0201571580.44RDSK18-0201581590.39RDSK18-0201591600.8RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-02114150.14RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.48	RDSK18-020	155	156	4.28
RDSK18-0201581590.39RDSK18-0201591600.8RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201761770.87RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12	RDSK18-020	156	157	1.03
RDSK18-0201591600.8RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.48UDSK18-0211251260.48	RDSK18-020	157	158	0.44
RDSK18-0201601610.13RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.48	RDSK18-020	158	159	0.39
RDSK18-0201711720.13RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201771800.11RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02114150.14RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.48	RDSK18-020	159	160	0.8
RDSK18-0201731740.16RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201771780.41RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02122230.24RDSK18-02124250.26RDSK18-02124250.26RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.48	RDSK18-020	160	161	0.13
RDSK18-0201741750.33RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-021281260.48	RDSK18-020	171	172	0.13
RDSK18-0201751760.75RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	173	174	0.16
RDSK18-0201761770.87RDSK18-0201771780.41RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	174	175	0.33
RDSK18-0201771780.41RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	175	176	0.75
RDSK18-0201781790.18RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02128290.12RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	176	177	0.87
RDSK18-0201791800.11RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	177	178	0.41
RDSK18-0201811820.44RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	178	179	0.18
RDSK18-0201992000.1RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	179	180	0.11
RDSK18-0202032040.22RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	181	182	0.44
RDSK18-021782.98RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	199	200	0.1
RDSK18-02114150.14RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-020	203	204	0.22
RDSK18-02122230.24RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-021	7	8	2.98
RDSK18-02123240.27RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-021	14	15	0.14
RDSK18-02124250.26RDSK18-02125260.32RDSK18-02126270.25RDSK18-02128290.12RDSK18-0211251260.48	RDSK18-021	22	23	0.24
RDSK18-021 25 26 0.32 RDSK18-021 26 27 0.25 RDSK18-021 28 29 0.12 RDSK18-021 125 126 0.48	RDSK18-021	23	24	0.27
RDSK18-021 26 27 0.25 RDSK18-021 28 29 0.12 RDSK18-021 125 126 0.48	RDSK18-021	24	25	0.26
RDSK18-021 28 29 0.12 RDSK18-021 125 126 0.48	RDSK18-021	25	26	0.32
RDSK18-021 125 126 0.48	RDSK18-021	26	27	0.25
	RDSK18-021	28	29	0.12
RDSK18-021 126 127 0.50	RDSK18-021	125	126	0.48
	RDSK18-021	126	127	0.50

PAGE 10 OF 20

			GRADE
HOLE ID	FROM	ТО	(g/t)
RDSK18-021	127	128	0.19
RDSK18-021	128	129	0.25
RDSK18-021	139	140	0.10
RDSK18-021	159	160	0.14
RDSK18-021	160	161	0.15
RDSK18-021	162	163	0.17
RDSK18-021	163	164	0.12
RDSK18-021	164	165	0.21
RDSK18-021	165	166	0.11
RDSK18-021	166	167	0.35
RDSK18-021	167	168	0.22
RDSK18-021	168	169	0.10
RDSK18-021	169	170	0.14
RDSK18-021	170	171	0.11
RDSK18-021	171	172	0.22
RDSK18-021	172	173	0.74
RDSK18-021	173	174	0.15
RDSK18-021	174	175	0.14
RDSK18-021	175	176	0.10
RDSK18-021	177	178	0.23
RDSK18-021	178	179	0.29
RDSK18-021	179	180	0.24
RDSK18-021	180	181	0.21
RDSK18-021	181	182	0.16
RDSK18-021	182	183	0.13
RDSK18-021	196	197	0.16
RDSK18-021	197	198	0.21
RDSK18-021	207	208	0.17
RDSK18-022	9	10	0.22
RDSK18-022	131	132	0.11
RDSK18-022	146	147	0.10
RDSK18-022	188	189	0.88
RDSK18-022	189	190	0.57
RDSK18-022	190	191	1.17
RDSK18-022	191	192	1.90
RDSK18-022	192	193	2.41
RDSK18-022	193	194	6.78
RDSK18-022	194	195	1.08
RDSK18-022	195	196	1.00
RDSK18-022	196	197	0.13
RDSK18-022	198	199	0.14
RDSK18-022	202	203	0.44
RDSK18-022	203	204	0.83

	1		
HOLE ID	FROM	ТО	GRADE (g/t)
RDSK18-022	210	211	0.14
RDSK18-022	229	230	0.10
RDSK18-022	230	231	0.16
RDSK18-022	233	234	0.31
RDSK18-022	236	237	0.10
RDSK18-022	239	240	0.16
RDSK18-022	242	243	0.26
RDSK18-023	111	112	1.98
RDSK18-023	115	116	0.19
RDSK18-023	117	118	0.10
RDSK18-024	79	80	0.11
RCSK18-038	3	4	0.11
RCSK18-038	61	62	0.16
RCSK18-038	83	84	0.21
RCSK18-038	85	86	0.36
RCSK18-038	86	87	0.11
RCSK18-038	87	88	0.19
RCSK18-038	89	90	0.15
RCSK18-038	90	91	0.22
RCSK18-038	93	94	0.12
RCSK18-038	96	97	0.14
RCSK18-038	119	120	0.28
RCSK18-038	125	126	0.11
RCSK18-038	126	127	0.15
RCSK18-038	127	128	0.18
RCSK18-038	129	130	0.21
RCSK18-038	130	131	0.22
RCSK18-038	131	132	0.93
RCSK18-038	132	133	1.27
RCSK18-038	133	134	8.07
RCSK18-038	134	135	0.23
RCSK18-038	135	136	0.15
RCSK18-038	136	137	0.13
RCSK18-038	137	138	0.51
RCSK18-038	138	139	0.11
RCSK18-038	139	140	0.18
RCSK18-038	140	141	0.24
RCSK18-038	141	142	0.26
RCSK18-038	142	143	0.20
RCSK18-038	143	144	0.70
RCSK18-038	144	145	0.18
RCSK18-038	145	146	0.14
RCSK18-038	146	147	0.11

			GRADE
HOLE ID	FROM	ТО	(g/t)
RCSK18-038	147	148	0.19
RCSK18-038	148	149	0.26
RCSK18-038	149	150	0.26
RCSK18-038	150	151	0.33
RCSK18-038	151	152	0.61
RCSK18-038	152	153	0.37
RCSK18-038	153	154	0.89
RCSK18-038	154	155	0.46
RCSK18-038	155	156	1.07
RCSK18-038	156	157	2.01
RCSK18-038	157	158	0.64
RCSK18-038	158	159	0.17
RCSK18-040	1	2	0.12
RCSK18-040	2	3	38.30
RCSK18-040	3	4	0.25
RCSK18-040	5	6	0.41
RCSK18-040	6	7	0.14
RCSK18-040	7	8	0.13
RCSK18-040	12	13	0.14
RCSK18-040	13	14	0.11
RCSK18-040	17	18	0.15
RCSK18-040	18	19	0.10
RCSK18-040	22	23	0.21
RCSK18-040	23	24	0.27
RCSK18-040	25	26	0.64
RCSK18-040	26	27	0.48
RCSK18-040	27	28	0.51
RCSK18-040	28	29	0.41
RCSK18-040	29	30	0.12
RCSK18-040	30	31	0.24
RCSK18-040	31	32	0.13
RCSK18-040	33	34	0.11
RCSK18-040	41	42	0.30
RCSK18-040	42	43	0.33
RCSK18-040	43	44	0.24
RCSK18-040	44	45	0.90
RCSK18-040	47	48	0.14
RCSK18-040	49	50	0.10
RCSK18-040	50	51	0.16
RCSK18-040	52	53	0.16
RCSK18-040	56	57	0.16
RCSK18-040	57	58	0.13
RCSK18-040	58	59	0.11

	1		00405
HOLE ID	FROM	то	GRADE (g/t)
RCSK18-040	59	60	0.15
RCSK18-040	60	61	0.10
RCSK18-040	66	67	0.12
RCSK18-040	68	69	0.10
RCSK18-040	82	83	0.12
RCSK18-040	83	84	0.15
RCSK18-040	93	94	0.10
RCSK18-040	103	104	0.65
RCSK18-040	106	107	1.04
RCSK18-040	107	108	0.13
RCSK18-040	110	111	0.21
RCSK18-040	111	112	0.13
RCSK18-040	112	113	0.12
RCSK18-040	113	114	0.17
RCSK18-040	115	116	0.12
RCSK18-040	116	117	0.21
RCSK18-040	117	118	0.13
RCSK18-040	118	119	0.21
RCSK18-040	119	120	0.13
RCSK18-040	129	130	0.13
RCSK18-040	130	131	0.15
RCSK18-040	131	132	0.17
RCSK18-040	132	133	0.18
RCSK18-040	133	134	0.11
RCSK18-040	135	136	0.10
RCSK18-040	153	154	0.16
RCSK18-040	160	161	0.19
RCSK18-041	7	8	0.19
RCSK18-041	11	12	0.11
RCSK18-041	13	14	0.18
RCSK18-041	17	18	0.19
RCSK18-041	18	19	0.16
RCSK18-041	19	20	0.45
RCSK18-041	20	21	0.20
RCSK18-041	21	22	0.31
RCSK18-041	22	23	0.20
RCSK18-041	23	24	0.32
RCSK18-041	24	25	0.47
RCSK18-041	25	26	0.25
RCSK18-041	26	27	0.10
RCSK18-041	27	28	0.21
RCSK18-041	28	29	0.60
RCSK18-041	29	30	0.22

HOLE ID	FROM	то	GRADE (g/t)
RCSK18-041	30	31	0.60
RCSK18-041	31	32	0.30
RCSK18-041	32	33	0.19
RCSK18-041	33	34	0.20
RCSK18-041	34	35	0.30
RCSK18-041	35	36	0.27
RCSK18-041	36	37	0.41
RCSK18-041	37	38	0.39
RCSK18-041	38	39	0.26
RCSK18-041	39	40	0.22
RCSK18-041	40	41	0.22
RCSK18-041	41	42	0.47
RCSK18-041	42	43	0.32
RCSK18-041	43	44	0.27
RCSK18-041	44	45	0.27
RCSK18-041	45	46	0.24
RCSK18-041	46	47	0.26
RCSK18-041	47	48	0.15
RCSK18-041	48	49	0.17
RCSK18-041	49	50	0.16
RCSK18-041	50	51	0.22
RCSK18-041	51	52	0.83
RCSK18-041	52	53	0.21
RCSK18-041	56	57	0.30
RCSK18-041	57	58	0.47
RCSK18-041	58	59	0.42
RCSK18-041	59	60	0.25
RCSK18-041	60	61	0.34
RCSK18-041	61	62	0.29
RCSK18-041	62	63	0.17
RCSK18-041	63	64	0.29
RCSK18-041	64	65	0.18
RCSK18-041	65	66	0.32
RCSK18-041	66	67	0.21
RCSK18-041	67	68	0.19
RCSK18-041	68	69	0.20
RCSK18-041	69	70	0.40
RCSK18-041	70	71	0.16
RCSK18-041	71	72	0.25
RCSK18-041	72	73	0.20
RCSK18-041	73	74	0.35
RCSK18-041	74	75	0.20
RCSK18-041	75	76	0.19

HOLE ID	FROM	то	GRADE (g/t)
RCSK18-041	76	77	0.25
RCSK18-041	77	78	0.33
RCSK18-041	78	79	0.33
RCSK18-041	79	80	0.23
RCSK18-041	80	81	0.14
RCSK18-041	81	82	0.23
RCSK18-041	82	83	0.10
RCSK18-041	83	84	0.57
RCSK18-041	84	85	0.56
RCSK18-041	85	86	0.21
RCSK18-041	86	87	0.12
RCSK18-041	87	88	0.23
RCSK18-041	88	89	0.20
RCSK18-041	89	90	0.33
RCSK18-041	90	91	0.14
RCSK18-041	91	92	0.23
RCSK18-041	92	93	0.13
RCSK18-041	93	94	0.17
RCSK18-041	94	95	0.11
RCSK18-041	95	96	0.13
RCSK18-041	96	97	0.35
RCSK18-041	97	98	0.25
RCSK18-041	98	99	0.22
RCSK18-041	99	100	0.27
RCSK18-041	100	101	0.10
RCSK18-041	101	102	0.45
RCSK18-041	102	103	0.12
RCSK18-041	104	105	0.10
RCSK18-041	106	107	0.10
RCSK18-041	108	109	0.12
RCSK18-041	110	111	0.18
RCSK18-041	111	112	0.34
RCSK18-041	112	113	0.11
RCSK18-041	113	114	0.31
RCSK18-041	114	115	0.54
RCSK18-041	115	116	0.42
RCSK18-041	116	117	0.18
RCSK18-041	117	118	0.14
RCSK18-041	118	119	0.12
RCSK18-041	119	120	0.26
RCSK18-041	120	121	0.35
RCSK18-041	121	122	0.25
RCSK18-041	122	123	0.16

		то	GRADE
HOLE ID	FROM	TO	(g/t)
RCSK18-041	123	124	0.76
RCSK18-042 RCSK18-042	6	7	0.60
	7	8	0.59
RCSK18-042	8	9	0.62
RCSK18-042	9	10	10.90
RCSK18-042	10	11	4.20
RCSK18-042	11	12	7.25
RCSK18-042	12	13	2.41
RCSK18-042	13	14	0.20
RCSK18-042	16	17	0.30
RCSK18-042	17	18	0.14
RCSK18-042	18	19	0.17
RCSK18-042	19	20	0.12
RCSK18-042	20	21	0.14
RCSK18-042	21	22	0.13
RCSK18-042	22	23	0.63
RCSK18-042	23	24	0.29
RCSK18-042	24	25	0.33
RCSK18-042	25	26	0.50
RCSK18-042	26	27	0.33
RCSK18-042	27	28	0.56
RCSK18-042	28	29	0.68
RCSK18-042	29	30	0.32
RCSK18-042	30	31	0.21
RCSK18-042	31	32	0.25
RCSK18-042	32	33	0.15
RCSK18-042	33	34	1.10
RCSK18-042	34	35	0.25
RCSK18-042	35	36	0.24
RCSK18-042	38	39	0.15
RCSK18-042	41	42	0.16
RCSK18-042	45	46	0.10
RCSK18-042	52	53	1.19
RCSK18-042	53	54	0.12
RCSK18-042	80	81	0.10
RCSK18-042	94	95	0.23
RCSK18-042	101	102	0.15
RCSK18-042	103	104	0.28
RCSK18-042	104	105	0.15
RCSK18-042	105	106	0.15
RCSK18-042	110	111	0.13
RCSK18-042	111	112	0.37
RCSK18-042	112	113	0.46

			00105
HOLE ID	FROM	ТО	GRADE (g/t)
RCSK18-042	113	114	2.70
RCSK18-042	114	115	0.16
RCSK18-042	115	116	0.14
RCSK18-042	116	117	5.72
RCSK18-042	117	118	0.29
RCSK18-043	0	1	0.11
RCSK18-043	1	2	0.18
RCSK18-043	2	3	0.27
RCSK18-043	3	4	70.00
RCSK18-043	4	5	0.81
RCSK18-043	5	6	2.95
RCSK18-043	6	7	1.92
RCSK18-043	7	8	3.25
RCSK18-043	8	9	2.00
RCSK18-043	9	10	1.68
RCSK18-043	10	11	3.78
RCSK18-043	11	12	4.43
RCSK18-043	12	13	4.08
RCSK18-043	13	14	3.08
RCSK18-043	14	15	3.86
RCSK18-043	15	16	3.14
RCSK18-043	16	17	3.46
RCSK18-043	17	18	2.83
RCSK18-043	18	19	0.80
RCSK18-043	19	20	0.57
RCSK18-043	20	21	0.33
RCSK18-043	21	22	0.60
RCSK18-043	22	23	0.38
RCSK18-043	23	24	1.01
RCSK18-043	24	25	0.20
RCSK18-043	25	26	0.20
RCSK18-043	26	27	2.25
RCSK18-043	27	28	17.30
RCSK18-043	28	29	1.59
RCSK18-043	29	30	4.59
RCSK18-043	30	31	6.55
RCSK18-043	31	32	3.74
RCSK18-043	32	33	4.10
RCSK18-043	33	34	3.34
RCSK18-043	34	35	3.86
RCSK18-043	35	36	6.50
RCSK18-043	36	37	5.98
RCSK18-043	37	38	9.46

HOLE ID	FROM	то	GRADE (g/t)
RCSK18-043	38	39	(g/t) 4.81
RCSK18-043	39	40	1.87
RCSK18-043	40	41	5.46
RCSK18-043	41	42	2.59
RCSK18-043	42	43	1.13
RCSK18-043	43	44	2.43
RCSK18-043	44	45	4.40
RCSK18-043	45	46	9.03
RCSK18-043	46	47	10.10
RCSK18-043	47	48	22.30
RCSK18-043	48	49	14.20
RCSK18-043	49	50	13.20
RCSK18-043	50	51	28.70
RCSK18-043	51	52	8.44
RCSK18-043	52	53	8.06
RCSK18-043	53	54	3.28
RCSK18-043	54	55	2.20
RCSK18-043	55	56	1.22
RCSK18-043	56	57	0.36
RCSK18-043	57	58	1.90
RCSK18-043	58	59	4.08
RCSK18-043	59	60	2.31
RCSK18-043	60	61	1.13
RCSK18-043	61	62	1.52
RCSK18-043	62	63	4.47
RCSK18-043	63	64	0.26
RCSK18-043	64	65	0.78
RCSK18-043	69	70	0.11
RCSK18-043	71	72	0.54
RCSK18-043	73	74	0.12
RCSK18-043	78	79	0.41
RCSK18-043	79	80	0.45
RCSK18-043	80	81	0.44
RCSK18-043	81	82	0.26
RCSK18-043	82	83	1.00
RCSK18-043	83	84	0.86
RCSK18-043	84	85	0.62
RCSK18-043	85	86	0.31
RCSK18-043	86	87	0.56
RCSK18-043	87	88	1.02
RCSK18-043	88	89	1.71
RCSK18-043	89	90	1.54
RCSK18-043	90	91	0.44

HOLE ID	FROM	ТО	GRADE (g/t)
RCSK18-043	91	92	0.53
RCSK18-043	96	97	0.22
RCSK18-043	98	99	0.38
RCSK18-043	99	100	0.17
RCSK18-043	100	101	0.25
RCSK18-043	101	102	0.56
RCSK18-043	102	103	19.40
RCSK18-043	103	104	26.60
RCSK18-043	104	105	23.20
RCSK18-043	105	106	8.10
RCSK18-043	106	107	5.18
RCSK18-043	107	108	6.84
RCSK18-043	108	109	39.30
RCSK18-043	109	110	9.11
RCSK18-043	110	111	2.92
RCSK18-043	111	112	1.09
RCSK18-043	112	113	1.98
RCSK18-043	113	114	0.55
RCSK18-043	114	115	0.59
RCSK18-043	115	116	0.22
RCSK18-043	116	117	7.88
RCSK18-043	117	118	9.21
RCSK18-043	118	119	9.24
RCSK18-043	119	120	1.94
RCSK18-043	120	121	0.34
RCSK18-043	121	122	0.30
RCSK18-043	122	123	3.89
RCSK18-043	123	124	2.72
RCSK18-043	124	125	2.26
RCSK18-043	125	126	3.46
RCSK18-043	126	127	0.76
RCSK18-043	127	128	0.68
RCSK18-043	128	129	0.26
RCSK18-043	129	130	0.71
RCSK18-043	130	131	1.56
RCSK18-043	131	132	3.42
RCSK18-043	132	133	0.21
RCSK18-043	133	134	0.20
RCSK18-043	135	136	0.28
RCSK18-043	136	137	0.43
RCSK18-043	137	138	1.46
RCSK18-043	138	139	0.58
RCSK18-043	139	140	0.26

HOLE ID	FROM	то	GRADE (g/t)
RCSK18-043	140	141	(g/t) 0.10
RCSK18-043	141	142	0.19
RCSK18-043	142	143	0.23
RCSK18-043	143	144	0.28
RCSK18-044	3	4	0.18
RCSK18-044	4	5	0.26
RCSK18-044	5	6	0.17
RCSK18-044	6	7	0.11
RCSK18-044	7	8	0.10
RCSK18-044	8	9	0.14
RCSK18-044	9	10	0.19
RCSK18-044	10	11	0.15
RCSK18-044	17	18	0.21
RCSK18-044	18	19	0.12
RCSK18-044	19	20	0.27
RCSK18-044	20	21	0.17
RCSK18-044	21	22	0.12
RCSK18-044	22	23	0.15
RCSK18-044	23	24	0.23
RCSK18-044	24	25	0.18
RCSK18-044	25	26	0.11
RCSK18-044	26	27	0.21
RCSK18-044	27	28	0.27
RCSK18-044	29	30	0.49
RCSK18-044	30	31	0.28
RCSK18-044	31	32	0.58
RCSK18-044	32	33	0.66
RCSK18-044	33	34	0.81
RCSK18-044	34	35	0.35
RCSK18-044	35	36	0.73
RCSK18-044	36	37	0.99
RCSK18-044	37	38	0.60
RCSK18-044	38	39	1.34
RCSK18-044	39	40	1.04
RCSK18-044	40	41	0.45
RCSK18-044	41	42	0.64
RCSK18-044	42	43	0.89
RCSK18-044	43	44	3.27
RCSK18-044	44	45	0.77
RCSK18-044	45	46	0.39

	1		00405
HOLE ID	FROM	то	GRADE (g/t)
RCSK18-044	46	47	0.23
RCSK18-044	47	48	0.21
RCSK18-044	65	66	0.11
RCSK18-044	78	79	0.14
RCSK18-044	79	80	0.94
RCSK18-044	80	81	0.13
RCSK18-044	81	82	0.10
RCSK18-044	83	84	0.51
RCSK18-044	86	87	0.17
RCSK18-044	91	92	0.16
RCSK18-044	92	93	0.11
RCSK18-044	93	94	0.20
RCSK18-044	94	95	0.60
RCSK18-044	118	119	0.27
RCSK18-044	128	129	0.88
RCSK18-044	129	130	0.67
RCSK18-044	130	131	2.53
RCSK18-044	131	132	0.32
RCSK18-044	132	133	0.67
RCSK18-044	133	134	1.19
RCSK18-044	134	135	0.72
RCSK18-044	135	136	0.35
RCSK18-044	142	143	0.55
RCSK18-044	143	144	0.13
RCSK18-044	144	145	0.10
RCSK18-044	145	146	0.13
RCSK18-044	146	147	0.22
RCSK18-044	147	148	0.21
RCSK18-044	148	149	0.17

Notes:

- All results of ≥ 0.10ppm are shown within the table. Intervals missing are below this threshold.
- Significant Intervals are reported using a threshold where the interval has a 0.5g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.

JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Samples were collected in situ at the drill site and are split collecting 2 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals. DD samples are cut to half core on 1m intervals. All samples were submitted to internationally corting 1 characterias in
Drilling techniques	Drill type (eg core, reverse circulation, open <hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face<sampling bit="" or<br="">other type, whether core is oriented and if so, by what method, etc).</sampling></hole 	 Drilling was carried out by AMCO Drilling using a UDR650 multipurpose rig
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of sample recovery was undertaken at the drill rig for each sample metre or run collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. For DD core recovery and RQD observations are made No sampling issue, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Oklo Resources subsidiary Africa Mining geologists. Geological logging used a standardised logging system recording mineral and rock types and their abundance, as well as alteration, silicification and level of weathering. A small representative sample was retained in a plastic chip tray for future reference and logging checks. A minimum of ¼ DD core is preserved for future logging and reference
Sub <sampling techniques and sample preparation</sampling 	 If core, whether cut or sawn and whether quarter, half or all core taken. If non<core, and="" dry.<="" etc="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> Whether sample sizes are appropriate to the grain size of the material being sampled. </half></sampling></core,>	 All RC samples were split using a 3 tier riffle splitter with no sample compositing being undertaken. All DD core was ½ cut and ¼ cut when a duplicate sample was taken. Duplicates were taken to evaluate representativeness At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %< 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample pulps were returned from the laboratory under secure "chain of custody" procedure by Africa Mining staff and are being stored in a secure location for possible future analysis. Sample sizes and laboratory preparation techniques are considered to be appropriate for this early stage exploration and the commodity being targeted.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Analysis for gold is undertaken at SGS and Bureau Veritas Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 0.01ppm Au. Fire assay is considered a "total" assay technique. No field non assay analysis instruments were used in the analyses reported. A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits. Samples returning > 1ppm were selected for reanalysis using a 24hr cyanide bottle roll leach on a 500g sample.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated by the Company's database consultant in Paris before loading into the drill hole database. No twinning of holes was undertaken in this program which is early stage exploration in nature. Reported drill results were compiled by the company's geologists, verified by the Company's database administrator and exploration manager.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down<hole and="" estimation.<="" in="" li="" locations="" mine="" mineral="" other="" resource="" surveys),="" trenches,="" used="" workings=""> Specification of the grid system used. Quality and adequacy of topographic control. </hole>	 No adjustments to assay data were made. Drill hole collars were positioned using non-differential GPS (. Accuracy of the GPS < +/< 3m and is considered appropriate for this level of early exploration. Locations are subsequentlycollected with DGPS. The grid system is UTM Zone 29N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC,RC and DD drilling is now being undertaken on a ~40x80m spacing wit infill being undertaken in areas of identified higher grade zones. Drilling reported in this program is of an early exploration nature has not been used to estimate any mineral resources or reserves. Work is ongoing to enable sufficient distribution of drilling.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known structures interpreted from other data sources.
Sample security	 The measures taken to ensure sample security. 	 RC and DD samples were taken to the SGS laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff. Sample pulps were returned from the laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to 	 The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited. The Dandoko project consists of: The Dandoko permit (100km2) which was renewed on the 10/8/17, for a partial of 2 where and renewed in the 20/8/17.
	obtaining a licence to operate in the area.	 on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years and: The Gombaly permit (34km2) which was granted on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling and minor reconnaissance (RC) drilling. The area that is presently covered by the Mousalla permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling. Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposit are often found in close proximity to linear geological structures (faults & shears) often associated with deep<seated li="" structures.<=""> Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >80m was encountered </seated>
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Results for all holes with 1m sample a gold in hole result greater than 0.1ppm are tabulated within the listed announcements during the quarter and further summarised into significant intervals as described below Locations are tabulated within the report and are how on plans and sections within the main body of this announcement. Dip of lithologies and/or mineralisation are not currently known. Drilling was oriented based on dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut <off and="" are="" be<br="" grades="" material="" should="" usually="">stated.</off>	Intervals are reported using a threshold where the interval has a 1.00 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 No grade top cut off has been applied to full results presented in Significant Intersection Table. No metal equivalent reporting is used or applied
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the definition of the mineralisation of the mineralisation with respect to the definition of the mineralisation with respect to the definition of the mineralisation of the mineralisation	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known
intercept lengths	 the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are 	as the exact orientation and extent of known mineralised structures are not yet determined.
	reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Drill hole location plans are provided earlier releases
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill hole locations are provided in earlier reports. All assays received of >=0.1ppm have been reported. No high cuts to reported data have been made.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that is considered meaningful and material has been omitted from this report
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large <scale drilling).<="" p="" step<out=""></scale>	 AC and RC drilling following up these results has commenced. Further aircore RC and diamond drilling is planned
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	to follow up the results reported in this announcement.

